Lenhert Steven, Mirkin Chad A, Fuchs Harald
Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Scanning. 2010 Jan-Feb;32(1):15-23. doi: 10.1002/sca.20166.
Lipids form the structural and functional basis of biological membranes, and methods for studying their self-organization in well-defined nano- and micro-scale model systems can provide insights into biology. Using lipids as an ink for dip-pen nanolithography (lipid DPN) permits the rapid nanostructuring of multicomponent model lipid membrane systems, but this technique has so far been limited to air. Here we demonstrate that lipid DPN can be carried out under water with single tips or parallel arrays. Using the same tip for deposition and imaging in aqueous solution permits imaging of self-spreading lipid bilayer spots in situ and quantification of the nanoscale spreading kinetics in real time by means of lateral-force microscopy. Furthermore, using fluorophore-labeled phospholipids, we directly observed, by confocal laser scanning microscopy, a two-phase (oil in water) meniscus formed around the contact point between the DPN tip and surface, gaining insights into the mechanisms of the ink transport. The methods described here provide a new tool and environment for high-resolution studies of lipid nanodynamics and molecular printing processes in general.
脂质构成了生物膜的结构和功能基础,在明确的纳米和微米尺度模型系统中研究其自组装的方法能够为生物学研究提供见解。将脂质用作蘸笔纳米光刻技术(脂质DPN)的墨水,可以实现多组分模型脂质膜系统的快速纳米结构化,但该技术目前仅限于在空气中进行。在此,我们证明脂质DPN能够在水下使用单个针尖或平行阵列进行。在水溶液中使用同一针尖进行沉积和成像,能够原位成像自扩散脂质双层斑点,并通过侧向力显微镜实时定量纳米级扩散动力学。此外,使用荧光团标记的磷脂,我们通过共聚焦激光扫描显微镜直接观察到在DPN针尖与表面的接触点周围形成了两相(水包油)弯月面,从而深入了解了墨水传输的机制。本文所述方法总体上为脂质纳米动力学和分子打印过程的高分辨率研究提供了一种新工具和新环境。