Xue Lan, Liang Hua
Department of Statistics, Oregon State University.
Scand Stat Theory Appl. 2009;37(1):26-46. doi: 10.1111/j.1467-9469.2009.00655.x.
We study a semiparametric generalized additive coefficient model, in which linear predictors in the conventional generalized linear models is generalized to unknown functions depending on certain covariates, and approximate the nonparametric functions by using polynomial spline. The asymptotic expansion with optimal rates of convergence for the estimators of the nonparametric part is established. Semiparametric generalized likelihood ratio test is also proposed to check if a nonparametric coefficient can be simplified as a parametric one. A conditional bootstrap version is suggested to approximate the distribution of the test under the null hypothesis. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed methods. We further apply the proposed model and methods to a data set from a human visceral Leishmaniasis (HVL) study conduced in Brazil from 1994 to 1997. Numerical results outperform the traditional generalized linear model and the proposed generalized additive coefficient model is preferable.
我们研究了一种半参数广义相加系数模型,其中传统广义线性模型中的线性预测器被推广为依赖于某些协变量的未知函数,并使用多项式样条来近似非参数函数。建立了非参数部分估计量具有最优收敛速度的渐近展开式。还提出了半参数广义似然比检验,以检验非参数系数是否可以简化为参数系数。建议使用条件自助法版本来近似原假设下检验的分布。进行了广泛的蒙特卡罗模拟研究,以检验所提出方法的有限样本性能。我们进一步将所提出的模型和方法应用于1994年至1997年在巴西进行的一项人类内脏利什曼病(HVL)研究的数据集。数值结果优于传统广义线性模型,所提出的广义相加系数模型更可取。