Shujie M A, Carroll Raymond J, Liang Hua, Xu Shizhong
University of California, Riverside.
Texas A&M University ; University of Technology Sydney.
Ann Stat. 2015 Oct;43(5):2102-2131. doi: 10.1214/15-AOS1344.
In the low-dimensional case, the generalized additive coefficient model (GACM) proposed by Xue and Yang [ (2006) 1423-1446] has been demonstrated to be a powerful tool for studying nonlinear interaction effects of variables. In this paper, we propose estimation and inference procedures for the GACM when the dimension of the variables is high. Specifically, we propose a groupwise penalization based procedure to distinguish significant covariates for the "large small " setting. The procedure is shown to be consistent for model structure identification. Further, we construct simultaneous confidence bands for the coefficient functions in the selected model based on a refined two-step spline estimator. We also discuss how to choose the tuning parameters. To estimate the standard deviation of the functional estimator, we adopt the smoothed bootstrap method. We conduct simulation experiments to evaluate the numerical performance of the proposed methods and analyze an obesity data set from a genome-wide association study as an illustration.
在低维情形下,薛和杨[(2006)1423 - 1446]提出的广义相加系数模型(GACM)已被证明是研究变量非线性交互效应的有力工具。在本文中,我们提出了变量维度较高时GACM的估计和推断程序。具体而言,我们提出了一种基于分组惩罚的程序,用于在“大 小”设置中区分显著的协变量。该程序在模型结构识别方面被证明是一致的。此外,我们基于改进的两步样条估计器为所选模型中的系数函数构建同时置信带。我们还讨论了如何选择调优参数。为了估计泛函估计器的标准差,我们采用平滑自助法。我们进行模拟实验以评估所提方法的数值性能,并分析来自全基因组关联研究的肥胖数据集作为示例。