Suppr超能文献

多种途径实现持久的膈神经运动易化。

Multiple pathways to long-lasting phrenic motor facilitation.

机构信息

Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Adv Exp Med Biol. 2010;669:225-30. doi: 10.1007/978-1-4419-5692-7_45.

Abstract

Plasticity is a hallmark of neural systems, including the neural system controlling breathing (Mitchell and Johnson 2003). Despite its biological and potential clinical significance, our understanding of mechanisms giving rise to any form of respiratory plasticity remains incomplete. Here we discuss recent advances in our understanding of cellular mechanisms giving rise to phrenic long-term facilitation (pLTF), a long-lasting increase in phrenic motor output induced by acute intermittent hypoxia (AIH). Recently, we have come to realize that multiple, distinct mechanisms are capable of giving rise to long-lasting phrenic motor facilitation (PMF); we use PMF as a general term that includes AIH-induced pLTF. It is important to begin an appreciation and understanding of these diverse pathways. Hence, we introduce a nomenclature based on upstream steps in the signaling cascade leading to PMF. Two pathways are featured here: the "Q" and the "S" pathways, named because they are induced by metabotropic receptors coupled to Gq and Gs proteins, respectively. These pathways appear to interact in complex and interesting ways, thus providing a range of potential responses in the face of changing physiological conditions or the onset of disease.

摘要

可塑性是神经系统的标志,包括控制呼吸的神经系统(Mitchell 和 Johnson,2003 年)。尽管它具有生物学和潜在的临床意义,但我们对导致任何形式呼吸可塑性的机制的理解仍然不完整。在这里,我们讨论了我们对导致膈神经长期易化(pLTF)的细胞机制的最新理解的进展,pLTF 是由急性间歇性低氧(AIH)引起的膈神经运动输出的持久增加。最近,我们开始认识到,多种不同的机制能够导致持久的膈神经运动易化(PMF);我们将 PMF 用作一个通用术语,包括 AIH 诱导的 pLTF。重要的是要开始欣赏和理解这些不同的途径。因此,我们引入了一种基于导致 PMF 的信号级联中上游步骤的命名法。这里有两个途径:“Q”途径和“S”途径,之所以这样命名,是因为它们分别由与 Gq 和 Gs 蛋白偶联的代谢型受体诱导。这些途径似乎以复杂而有趣的方式相互作用,从而在面对生理条件变化或疾病发作时提供一系列潜在的反应。

相似文献

1
Multiple pathways to long-lasting phrenic motor facilitation.
Adv Exp Med Biol. 2010;669:225-30. doi: 10.1007/978-1-4419-5692-7_45.
2
Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling.
J Neurophysiol. 2018 Jun 1;119(6):2176-2185. doi: 10.1152/jn.00378.2017. Epub 2018 Mar 7.
3
Spinal 5-HT7 receptors and protein kinase A constrain intermittent hypoxia-induced phrenic long-term facilitation.
Neuroscience. 2013 Oct 10;250:632-43. doi: 10.1016/j.neuroscience.2013.06.068. Epub 2013 Jul 11.
4
Cervical spinal 5-HT and 5-HT receptors are both necessary for moderate acute intermittent hypoxia-induced phrenic long-term facilitation.
J Appl Physiol (1985). 2019 Aug 1;127(2):432-443. doi: 10.1152/japplphysiol.01113.2018. Epub 2019 Jun 20.
5
Hypoxia-induced phrenic long-term facilitation: emergent properties.
Ann N Y Acad Sci. 2013 Mar;1279:143-53. doi: 10.1111/nyas.12085.
6
Mechanisms of severe acute intermittent hypoxia-induced phrenic long-term facilitation.
J Neurophysiol. 2021 Apr 1;125(4):1146-1156. doi: 10.1152/jn.00691.2020. Epub 2021 Feb 10.
7
Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation.
J Neurosci. 2016 Jul 27;36(30):7877-85. doi: 10.1523/JNEUROSCI.4122-15.2016.
8
Phrenic long-term facilitation after acute intermittent hypoxia requires spinal ERK activation but not TrkB synthesis.
J Appl Physiol (1985). 2012 Oct 15;113(8):1184-93. doi: 10.1152/japplphysiol.00098.2012. Epub 2012 Sep 6.
9
Daily acute intermittent hypoxia enhances phrenic motor output and stimulus-evoked phrenic responses in rats.
J Neurophysiol. 2021 Sep 1;126(3):777-790. doi: 10.1152/jn.00112.2021. Epub 2021 Jul 14.
10
Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation.
J Physiol. 2011 Mar 15;589(Pt 6):1397-407. doi: 10.1113/jphysiol.2010.201657. Epub 2011 Jan 17.

引用本文的文献

2
Microglia regulate motor neuron plasticity via reciprocal fractalkine and adenosine signaling.
Nat Commun. 2024 Nov 28;15(1):10349. doi: 10.1038/s41467-024-54619-x.
3
The hypoxic respiratory response of the pre-Bötzinger complex.
Heliyon. 2024 Jul 11;10(14):e34491. doi: 10.1016/j.heliyon.2024.e34491. eCollection 2024 Jul 30.
4
Microglia regulate motor neuron plasticity via reciprocal fractalkine/adenosine signaling.
bioRxiv. 2024 May 9:2024.05.07.592939. doi: 10.1101/2024.05.07.592939.
5
Ampakines increase diaphragm activation following mid-cervical contusion injury in rats.
Exp Neurol. 2024 Jun;376:114769. doi: 10.1016/j.expneurol.2024.114769. Epub 2024 Apr 4.
6
Pattern sensitivity of ampakine-hypoxia interactions for evoking phrenic motor facilitation in anesthetized rat.
J Neurophysiol. 2024 Feb 1;131(2):216-224. doi: 10.1152/jn.00315.2023. Epub 2023 Dec 20.
7
Magnitude and Mechanism of Phrenic Long-term Facilitation Shift Between Daily Rest Versus Active Phase.
Function (Oxf). 2023 Aug 8;4(6):zqad041. doi: 10.1093/function/zqad041. eCollection 2023.
8
Novel role for non-invasive neuromodulation techniques in central respiratory dysfunction.
Front Neurosci. 2023 Aug 23;17:1226660. doi: 10.3389/fnins.2023.1226660. eCollection 2023.
9
Increased spinal adenosine impairs phrenic long-term facilitation in aging rats.
J Appl Physiol (1985). 2023 Jun 1;134(6):1537-1548. doi: 10.1152/japplphysiol.00197.2023. Epub 2023 May 11.

本文引用的文献

1
Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation.
J Physiol. 2011 Mar 15;589(Pt 6):1397-407. doi: 10.1113/jphysiol.2010.201657. Epub 2011 Jan 17.
2
Spinal adenosine A2(A) receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia.
J Physiol. 2010 Jan 1;588(Pt 1):255-66. doi: 10.1113/jphysiol.2009.180075. Epub 2009 Nov 9.
3
Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation.
Exp Neurol. 2009 May;217(1):116-23. doi: 10.1016/j.expneurol.2009.01.017. Epub 2009 Feb 3.
4
NADPH oxidase activity is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation.
J Physiol. 2009 May 1;587(Pt 9):1931-42. doi: 10.1113/jphysiol.2008.165597. Epub 2009 Feb 23.
5
Reactive oxygen species and respiratory plasticity following intermittent hypoxia.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):263-71. doi: 10.1016/j.resp.2008.07.008.
6
Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats.
J Appl Physiol (1985). 2008 Sep;105(3):942-50. doi: 10.1152/japplphysiol.01274.2006. Epub 2008 Jun 26.
7
Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia.
J Neurosci. 2008 Mar 12;28(11):2949-58. doi: 10.1523/JNEUROSCI.5539-07.2008.
8
Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation.
J Neurosci. 2008 Feb 27;28(9):2033-42. doi: 10.1523/JNEUROSCI.3570-07.2008.
9
Respiratory long-term facilitation following intermittent hypoxia requires reactive oxygen species formation.
Neuroscience. 2008 Mar 3;152(1):189-97. doi: 10.1016/j.neuroscience.2007.12.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验