Shaknovich Rita, Figueroa Maria E, Melnick Ari
Division of Immunopathology, Department of Pathology, Weill Medical College, Cornell University, New York, NY, USA.
Methods Mol Biol. 2010;632:191-201. doi: 10.1007/978-1-60761-663-4_12.
The role of cytosine methylation in the regulation of gene expression during normal development and malignant transformation is currently under intense investigation. An ever increasing body of evidence demonstrates that carcinogenesis is associated with aberrant DNA methylation of the promoters of tumor suppressor genes (Chin Med J (Engl) 111:1028-1030, 1998; Leukemia 17:2533-2535, 2003), hypomethylation of oncogenes (Toxicol Appl Pharmacol 206:288-298, 2005; Toxicology 50:231-245, 1988), and concurrent loss of methylation in the intergenic areas and gene bodies, which may lead to genomic instability and chromosomal fragility (Cytogenet Cell Genet 89:121-128, 2000). Single locus methylation assays have focused largely on specific known tumor suppressor genes or oncogenes (Chin Med J (Engl) 111:1028-1030, 1998; Cancer Res 57:594-599, 1997; Hum Genet 94:491-496, 1994; Mol Cell Biol 14:4225-4232, 1994; Gastroenterology 116:394-400, 1999). Such approaches, while being useful, have clear limitations. With the advent of genome-wide microarray-based techniques, it has become possible to perform genome-wide exploratory studies to better understand genomic patterning of DNA methylation and also to discover new potential disease-specific epigenetic lesions (J Cell Biochem 88:138-143, 2003; Genome Res 16:1075-1083, 2006). In order to capture this type of information from primary human tissues, we have adopted and optimized the HELP assay (HpaII tiny fragment Enrichment by Ligation-mediated PCR) to compare and contrast the abundance of cytosine methylation of genomic regions that are relatively enriched for CpG dinucleotides. While we have mainly used a custom NimbleGen-Roche high-density oligonucleotide microarray containing 25,626 HpaII amplifiable fragments, many other microarray platforms or high throughput sequencing strategies can be used with HELP.
胞嘧啶甲基化在正常发育和恶性转化过程中对基因表达调控的作用目前正在深入研究中。越来越多的证据表明,致癌作用与肿瘤抑制基因启动子的异常DNA甲基化(《中华医学杂志(英文版)》111:1028 - 1030, 1998;《白血病》17:2533 - 2535, 2003)、癌基因的低甲基化(《毒理学与应用药理学》206:288 - 298, 2005;《毒理学》50:231 - 245, 1988)以及基因间区域和基因体内甲基化的同时缺失有关,这可能导致基因组不稳定和染色体脆性(《细胞遗传学与细胞遗传学》89:121 - 128, 2000)。单基因座甲基化检测主要集中在特定的已知肿瘤抑制基因或癌基因上(《中华医学杂志(英文版)》111:1028 - 1030, 1998;《癌症研究》57:594 - 599, 1997;《人类遗传学》94:491 - 496, 1994;《分子细胞生物学》14:4225 - 4232, 1994;《胃肠病学》116:394 - 400, 1999)。这些方法虽然有用,但有明显的局限性。随着基于全基因组微阵列技术的出现,进行全基因组探索性研究以更好地理解DNA甲基化的基因组模式并发现新的潜在疾病特异性表观遗传损伤成为可能(《细胞生物化学杂志》88:138 - 143, 2003;《基因组研究》16:1075 - 1083, 2006)。为了从原发性人类组织中获取这类信息,我们采用并优化了HELP检测法(通过连接介导的PCR富集HpaII小片段),以比较和对比相对富含CpG二核苷酸的基因组区域的胞嘧啶甲基化丰度。虽然我们主要使用了包含25,626个可被HpaII扩增片段的定制NimbleGen - Roche高密度寡核苷酸微阵列,但许多其他微阵列平台或高通量测序策略也可与HELP检测法一起使用。