Suppr超能文献

建立非洲绿猴的脊髓损伤模型,用于临床前评估种植有人神经干细胞的可生物降解聚合物支架。

Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

J Neurosci Methods. 2010 May 15;188(2):258-69. doi: 10.1016/j.jneumeth.2010.02.019. Epub 2010 Feb 26.

Abstract

Given the involvement of post-mitotic neurons, long axonal tracts and incompletely elucidated injury and repair pathways, spinal cord injury (SCI) presents a particular challenge for the creation of preclinical models to robustly evaluate longitudinal changes in neuromotor function in the setting in the presence and absence of intervention. While rodent models exhibit high degrees of spontaneous recovery from SCI injury, animal care concerns preclude complete cord transections in non-human primates and other larger vertebrate models. To overcome such limitations a segmental thoracic (T9-T10) spinal cord hemisection was created and characterized in the African green monkey. Physiological tolerance of the model permitted behavioral analyses for a prolonged period post-injury, extending to predefined study termination points at which histological and immunohistochemical analyses were performed. Four monkeys were evaluated (one receiving no implant at the lesion site, one receiving a poly(lactide-co-glycolide) (PLGA) scaffold, and two receiving PLGA scaffolds seeded with human neural stem cells (hNSC)). All subjects exhibited Brown-Séquard syndrome 2 days post-injury consisting of ipsilateral hindlimb paralysis and contralateral hindlimb hypesthesia with preservation of bowel and bladder function. A 20-point observational behavioral scoring system allowed quantitative characterization of the levels of functional recovery. Histological endpoints including silver degenerative staining and Iba1 immunohistochemistry, for microglial and macrophage activation, were determined to reliably define lesion extent and correlate with neurobehavioral data, and justify invasive telemetered electromyographic and kinematic studies to more definitively address efficacy and mechanism.

摘要

鉴于脊髓损伤 (SCI) 涉及有丝分裂后神经元、长轴突束以及尚未完全阐明的损伤和修复途径,因此为了在存在和不存在干预的情况下,对神经运动功能的纵向变化进行稳健评估,创建用于临床前模型的创建提出了特殊的挑战。虽然啮齿动物模型表现出 SCI 损伤后高度自发恢复,但动物护理问题排除了非人类灵长类动物和其他大型脊椎动物模型中完全的脊髓横断。为了克服这些限制,在非洲绿猴中创建并表征了节段性胸 (T9-T10) 脊髓半切模型。该模型的生理耐受性允许在损伤后进行长时间的行为分析,延长至预定的研究终点,在这些终点进行组织学和免疫组织化学分析。对四只猴子进行了评估(一只在损伤部位未植入任何植入物,一只植入聚 (乳酸-共-乙醇酸) (PLGA) 支架,两只植入 PLGA 支架并接种人神经干细胞 (hNSC))。所有动物在损伤后 2 天均表现出 Brown-Séquard 综合征,包括同侧后肢瘫痪和对侧后肢感觉减退,同时保留了肠道和膀胱功能。一个 20 分观察行为评分系统允许对功能恢复水平进行定量描述。组织学终点包括银染色和 Iba1 免疫组织化学,用于检测小胶质细胞和巨噬细胞的激活,可靠地定义了损伤范围,并与神经行为数据相关,这也证明了侵入性遥测肌电图和运动学研究的合理性,以更明确地解决疗效和机制问题。

相似文献

3
Effects of human neural stem cell transplantation in canine spinal cord hemisection.
Neurol Res. 2009 Nov;31(9):996-1002. doi: 10.1179/174313209X385626. Epub 2009 Jan 9.
4
Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury.
Biomaterials. 2017 Apr;123:63-76. doi: 10.1016/j.biomaterials.2017.01.024. Epub 2017 Jan 25.
5
Effects of glial transplantation on functional recovery following acute spinal cord injury.
J Neurotrauma. 2005 May;22(5):575-89. doi: 10.1089/neu.2005.22.575.
10
Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy.
Cell Tissue Res. 2016 Oct;366(1):129-42. doi: 10.1007/s00441-016-2402-1. Epub 2016 May 5.

引用本文的文献

1
Animal Models of Spinal Cord Injury.
Biomedicines. 2025 Jun 10;13(6):1427. doi: 10.3390/biomedicines13061427.
3
Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury.
Bioact Mater. 2024 May 30;39:521-543. doi: 10.1016/j.bioactmat.2024.04.015. eCollection 2024 Sep.
4
Advances in spinal cord injury: insights from non-human primates.
Neural Regen Res. 2024 Nov 1;19(11):2354-2364. doi: 10.4103/NRR.NRR-D-23-01505. Epub 2024 Jan 31.
5
Neuroplasticity and regeneration after spinal cord injury.
N Am Spine Soc J. 2023 Jun 8;15:100235. doi: 10.1016/j.xnsj.2023.100235. eCollection 2023 Sep.
6
Engineered human spinal cord-like tissues with dorsal and ventral neuronal progenitors for spinal cord injury repair in rats and monkeys.
Bioact Mater. 2023 Mar 29;27:125-137. doi: 10.1016/j.bioactmat.2023.03.015. eCollection 2023 Sep.
7
- Promotes the Survival of Motor Neurons Derived from Neural Stem Cells.
Biology (Basel). 2023 Jan 13;12(1):132. doi: 10.3390/biology12010132.
9
Advances in Neural Stem Cell Therapy for Spinal Cord Injury: Safety, Efficacy, and Future Perspectives.
Neurospine. 2022 Dec;19(4):946-960. doi: 10.14245/ns.2244658.329. Epub 2022 Nov 10.
10
Spinal Cord Injury in the Mouse Using the Infinite Horizon Spinal Cord Impactor.
Methods Mol Biol. 2022;2515:193-201. doi: 10.1007/978-1-0716-2409-8_12.

本文引用的文献

1
Transformation of nonfunctional spinal circuits into functional states after the loss of brain input.
Nat Neurosci. 2009 Oct;12(10):1333-42. doi: 10.1038/nn.2401. Epub 2009 Sep 20.
3
Spinal cord injury: time to move?
J Neurosci. 2007 Oct 31;27(44):11782-92. doi: 10.1523/JNEUROSCI.3444-07.2007.
4
Update on the treatment of spinal cord injury.
Prog Brain Res. 2007;161:217-33. doi: 10.1016/S0079-6123(06)61015-7.
6
Therapeutic interventions after spinal cord injury.
Nat Rev Neurosci. 2006 Aug;7(8):628-43. doi: 10.1038/nrn1955.
7
Inflammatory-mediated injury and repair in the traumatically injured spinal cord.
Curr Pharm Des. 2005;11(10):1223-36. doi: 10.2174/1381612053507468.
8
Neuroprotection and acute spinal cord injury: a reappraisal.
NeuroRx. 2004 Jan;1(1):80-100. doi: 10.1602/neurorx.1.1.80.
9
Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
J Neurophysiol. 2005 Jun;93(6):3127-45. doi: 10.1152/jn.01073.2004. Epub 2005 Jan 12.
10
Plasticity of the spinal neural circuitry after injury.
Annu Rev Neurosci. 2004;27:145-67. doi: 10.1146/annurev.neuro.27.070203.144308.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验