文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury.

作者信息

Ma Dezun, Fu Changlong, Li Fenglu, Ruan Renjie, Lin Yanming, Li Xihai, Li Min, Zhang Jin

机构信息

Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, Fujian, 350122, PR China.

Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, PR China.

出版信息

Bioact Mater. 2024 May 30;39:521-543. doi: 10.1016/j.bioactmat.2024.04.015. eCollection 2024 Sep.


DOI:10.1016/j.bioactmat.2024.04.015
PMID:38883317
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11179178/
Abstract

Spinal cord injury (SCI) often results in irreversible loss of sensory and motor functions, and most SCIs are incurable with current medical practice. One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment, which mainly comprises excessive inflammation, deposition of inhibitory molecules, neurotrophic factor deprivation, glial scar formation, and imbalance of vascular function. To overcome this challenge, implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration, remyelination at injury site, and functional recovery after SCI. This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment, regulate inhibitory microenvironment, and reshape revascularization microenvironment. Moreover, technological limitations, challenges, and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed. This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/9d1ebc240e93/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/9943518f7d27/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/f2b3111919d4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/4183f2d70ff5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/726bf2502cd7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/c4125b4e47dc/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/158c8733aaee/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/c74cf5e19f92/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/ed0479e29a8a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/db5be9bbabf0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/9d1ebc240e93/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/9943518f7d27/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/f2b3111919d4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/4183f2d70ff5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/726bf2502cd7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/c4125b4e47dc/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/158c8733aaee/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/c74cf5e19f92/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/ed0479e29a8a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/db5be9bbabf0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d4/11179178/9d1ebc240e93/gr9.jpg

相似文献

[1]
Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury.

Bioact Mater. 2024-5-30

[2]
Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury.

Biomed Mater. 2021-8-27

[3]
Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury.

Biomed Res Int. 2022

[4]
Microenvironment Imbalance of Spinal Cord Injury.

Cell Transplant. 2018-6-5

[5]
GDNF-Loaded Polydopamine Nanoparticles-Based Anisotropic Scaffolds Promote Spinal Cord Repair by Modulating Inhibitory Microenvironment.

Adv Healthc Mater. 2023-3

[6]
Regenerative rehabilitation with conductive biomaterials for spinal cord injury.

Acta Biomater. 2022-2

[7]
Implantation with SHED sheet induced with homogenate protein of spinal cord promotes functional recovery from spinal cord injury in rats.

Front Bioeng Biotechnol. 2023-3-14

[8]
Cell Therapeutic Strategies for Spinal Cord Injury.

Adv Wound Care (New Rochelle). 2019-11-1

[9]
Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.

Stem Cell Res Ther. 2021-1-7

[10]
Role and prospects of regenerative biomaterials in the repair of spinal cord injury.

Neural Regen Res. 2019-8

引用本文的文献

[1]
Injectable ROS homeostasis protective hydrogel inhibiting microglial ferroptosis through the Nrf2/Slc7a11/Gpx4 to alleviate neuropathic pain and promote spinal cord injury repair.

Redox Biol. 2025-8-8

[2]
Exosomes: a promising microenvironment modulator for spinal cord injury treatment.

Int J Biol Sci. 2025-6-5

[3]
Curcumin-loaded polydopamine nanoparticles-based antioxidant scaffold promote spinal cord repair though dural-regulation of macrophage polarization.

Mater Today Bio. 2025-5-23

[4]
Biological engineering approaches for modulating the pathological microenvironment and promoting axonal regeneration after spinal cord injury.

Front Neurosci. 2025-5-12

[5]
Sodium tanshinone IIA sulfonate promotes proliferation and differentiation of endogenous neural stem cells to repair rat spinal cord injury via the Notch pathway.

J Transl Med. 2025-3-24

[6]
Biomaterial-based strategies: a new era in spinal cord injury treatment.

Neural Regen Res. 2025-12-1

[7]
Bioinspired conductive oriented nanofiber felt with efficient ROS clearance and anti-inflammation for inducing M2 macrophage polarization and accelerating spinal cord injury repair.

Bioact Mater. 2024-12-13

本文引用的文献

[1]
Construction of functional neural network tissue combining CBD-NT3-modified linear-ordered collagen scaffold and TrkC-modified iPSC-derived neural stem cells for spinal cord injury repair.

Bioact Mater. 2024-2-3

[2]
PEG-chitosan (Neuro-PEG) induced restoration of motor function after complete transection of the dorsal spinal cord in swine. A pilot study.

Surg Neurol Int. 2023-12-13

[3]
Custom-engineered hydrogels for delivery of human iPSC-derived neurons into the injured cervical spinal cord.

Biomaterials. 2024-3

[4]
Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration.

Int J Nanomedicine. 2023

[5]
Pericyte-derived exosomal miR-210 improves mitochondrial function and inhibits lipid peroxidation in vascular endothelial cells after traumatic spinal cord injury by activating JAK1/STAT3 signaling pathway.

J Nanobiotechnology. 2023-11-27

[6]
Conducting polymer-based scaffolds for neuronal tissue engineering.

J Mater Chem B. 2023-11-29

[7]
Regenerative medicine strategies for chronic complete spinal cord injury.

Neural Regen Res. 2024-4

[8]
Targeted Delivery of RGD-CD146CD271 Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood-Spinal Cord Barrier Repair after Spinal Cord Injury.

ACS Nano. 2023-9-26

[9]
Thermosensitive hydrogel-based GPR124 delivery strategy for rebuilding blood-spinal cord barrier.

Bioeng Transl Med. 2023-6-6

[10]
Cross-Linkable Hyaluronic-Ferulic Acid Conjugate Containing Bucladesine Nanoparticles Promotes Neural Regeneration after Spinal Cord Injury.

ACS Appl Mater Interfaces. 2023-9-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索