EMBL Outstation c/o DESY, Notkestrasse 85, D-22603, Hamburg, Germany.
Dalton Trans. 2010 Mar 28;39(12):3057-64. doi: 10.1039/b922557a. Epub 2010 Jan 28.
The [Fe]-hydrogenase is an ideal system for studying the electronic properties of the low spin iron site that is common to the catalytic centres of all hydrogenases. Because they have no auxiliary iron-sulfur clusters and possess a cofactor containing a single iron centre, the [Fe]-hydrogenases are well suited for spectroscopic analysis of those factors required for the activation of molecular hydrogen. Specifically, in this study we shed light on the electronic and molecular structure of the iron centre by XAS analysis of [Fe]-hydrogenase from Methanocaldococcus jannashii and five model complexes (Fe(ethanedithiolate)(CO)(2)(PMe(3))(2), K(18-crown-6)[Fe(CN)(2)(CO)(3)], K[Fe(CN)(CO)(4)], K(3)[Fe(III)(CN)(6)], K(4)[Fe(II)(CN)(6)]). The different electron donors have a strong influence on the iron absorption K-edge energy position, which is frequently used to determine the metal oxidation state. Our results demonstrate that the K-edges of Fe(II) complexes, achieved with low-spin ferrous thiolates, are consistent with a ferrous centre in the [Fe]-hydrogenase from Methanocaldococcus jannashii. The metal geometry also strongly influences the XANES and thus the electronic structure. Using in silico simulation, we were able to reproduce the main features of the XANES spectra and describe the effects of individual donor contributions on the spectra. Thereby, we reveal the essential role of an unusual carbon donor coming from an acyl group of the cofactor in the determination of the electronic structure required for the activity of the enzyme.
[Fe]-氢化酶是研究低自旋铁位点电子性质的理想体系,该铁位点普遍存在于所有氢化酶的催化中心中。由于它们没有辅助的铁-硫簇,并且含有一个单一的铁中心的辅因子,[Fe]-氢化酶非常适合于对那些活化分子氢所必需的因素进行光谱分析。具体来说,在这项研究中,我们通过对 Methanocaldococcus jannashii 的 [Fe]-氢化酶和五个模型配合物(Fe(ethanedithiolate)(CO)(2)(PMe(3))(2),K(18-crown-6)[Fe(CN)(2)(CO)(3)],K[Fe(CN)(CO)(4)],K(3)[Fe(III)(CN)(6)],K(4)[Fe(II)(CN)(6)])的 XAS 分析,揭示了铁中心的电子和分子结构。不同的电子供体对铁吸收 K 边能量位置有很强的影响,该位置通常用于确定金属氧化态。我们的结果表明,通过低自旋亚铁硫醇盐实现的 Fe(II)配合物的 K 边与 Methanocaldococcus jannashii 的 [Fe]-氢化酶中的亚铁中心一致。金属几何形状也强烈影响 XANES,从而影响电子结构。通过使用计算机模拟,我们能够重现 XANES 光谱的主要特征,并描述单个供体贡献对光谱的影响。由此,我们揭示了来自辅因子酰基的一个不寻常的碳供体在确定酶活性所需的电子结构方面的重要作用。