Cellular Therapy Group, Cancer Research UK Department of Medical Oncology, Paterson Institute for Cancer Research, Manchester, UK.
Curr Gene Ther. 2010 Apr;10(2):77-90. doi: 10.2174/156652310791111001.
The last few years have seen the transfer of two decades of research into Chimeric Antigen Receptors (CARs) into clinical trials. Despite this extensive research, there is still a great deal of debate into the optimal design strategy for these, primarily, anti-cancer entities. The archetypal CAR consists of a single-chain antibody fragment, specific to a tumour-associated antigen, fused to a component of the T-cell receptor complex (typically CD3zeta) which on antigen binding primes the engrafted T-cell for anti-tumour activity. The modular nature of these artificial receptors has enabled researchers to modify aspects of their structure, including the extracellular spacer, transmembrane and cytoplasmic domain, to achieve laboratory defined optimal activity. Despite this there is no consensus on the optimal structure, a problem exacerbated by conflicting results using identical receptors. In this review, we provide a structural overview of CAR development and highlight areas that require further refinement. We also attempt to identify possible reasons for conflicting results in the hope that this information will inspire future rational design strategies for optimal tumour targeting using CARs.
过去几年,将 20 年的嵌合抗原受体 (CAR) 研究成果转化为临床试验。尽管进行了广泛的研究,但对于这些主要针对抗癌实体的最佳设计策略仍存在很大争议。典型的 CAR 由与肿瘤相关抗原特异性的单链抗体片段与 T 细胞受体复合物的组成部分(通常是 CD3zeta)融合而成,抗原结合后使移植的 T 细胞对肿瘤活性产生刺激。这些人工受体的模块化性质使研究人员能够修饰其结构的各个方面,包括细胞外间隔区、跨膜区和细胞质域,以达到实验室定义的最佳活性。尽管如此,对于最佳结构仍没有共识,使用相同受体的相互矛盾的结果使这个问题更加严重。在这篇综述中,我们提供了 CAR 发展的结构概述,并强调了需要进一步改进的领域。我们还试图确定导致相互矛盾结果的可能原因,希望这些信息将激发未来使用 CAR 进行最佳肿瘤靶向的合理设计策略。