Department of Medicine II, Mannheim Medical Faculty of the University Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
Appl Spectrosc. 2010 Mar;64(3):262-7. doi: 10.1366/000370210790918508.
Cardiovascular disease is the leading cause of death in Western civilization. In this pilot study we evaluated a new method for the diagnosis of myocardial infarction and heart failure by determining the typical fingerprint in the infrared (IR) spectrum of 1 microL of a dried patient serum sample by Fourier transform IR spectroscopy. For classification, cluster analysis and artificial neural networks (ANN) were applied. In this study 567 subjects were enrolled, comprising 225 controls (Co) and 342 patients with myocardial infarction (MI) (n = 157) and heart failure (HF) (n = 185). By applying artificial neural network algorithms, the following sensitivities and specificities of the same spectra were determined: MI versus Co (98%, 97%), HF versus Co (98%, 100%), MI versus HF (100%, 100%), and MI plus HF versus Co (100%, 100%). Based on our data, mid-IR spectroscopy appears to be a promising new method to diagnose heart diseases from serum samples. Artificial neural network algorithms proved to be superior to cluster analysis for correct prediction.
心血管疾病是西方文明中导致死亡的主要原因。在这项初步研究中,我们通过傅里叶变换红外光谱法测定 1 微升干燥患者血清样本的红外(IR)光谱中的典型指纹,评估了一种用于诊断心肌梗死和心力衰竭的新方法。为了进行分类,我们应用了聚类分析和人工神经网络(ANN)。在这项研究中,共纳入了 567 名受试者,包括 225 名对照(Co)和 342 名心肌梗死(MI)患者(n = 157)和心力衰竭(HF)患者(n = 185)。通过应用人工神经网络算法,对相同光谱确定了以下灵敏度和特异性:MI 与 Co(98%,97%),HF 与 Co(98%,100%),MI 与 HF(100%,100%),以及 MI 和 HF 与 Co(100%,100%)。基于我们的数据,中红外光谱似乎是一种很有前途的从血清样本中诊断心脏病的新方法。人工神经网络算法在正确预测方面优于聚类分析。