Suppr超能文献

一种通过傅里叶变换红外(FTIR)光谱的聚类和人工神经网络分析对真菌菌丝进行菌株分类的新方法。

A novel procedure for strain classification of fungal mycelium by cluster and artificial neural network analysis of Fourier transform infrared (FTIR) spectra.

机构信息

Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.

出版信息

Analyst. 2009 Jun;134(6):1215-23. doi: 10.1039/b821286d. Epub 2009 Apr 2.

Abstract

Fourier transform infrared spectroscopy (FTIR) was used to discriminate important wood-destroying fungi. Mycelia of 26 fungal strains belonging to 24 different species were grown on agar plates and subjected to FTIR attenuated total reflection (ATR) measurements. To classify the FTIR spectra, cluster analysis--an unsupervised multivariate data analysis method--was compared with artificial neural network (ANN) analysis--a supervised approach. By internal validation, both methods classified 99% of the spectra correctly. External validation with independent test set spectra resulted in 95% correctly classified spectra, demonstrating the high potential of this method for fungal strain identification.

摘要

傅里叶变换红外光谱(FTIR)被用于鉴别重要的木材破坏真菌。26 株真菌菌株的菌丝在琼脂平板上生长,并进行傅里叶变换衰减全反射(ATR)测量。为了对 FTIR 光谱进行分类,采用无监督多元数据分析方法——聚类分析与有监督方法——人工神经网络(ANN)分析进行了比较。通过内部验证,这两种方法正确分类了 99%的光谱。使用独立测试集光谱进行外部验证,得到了 95%正确分类的光谱,表明该方法在真菌菌株鉴定方面具有很高的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验