Büchl Nicole R, Wenning Mareike, Seiler Herbert, Mietke-Hofmann Henriette, Scherer Siegfried
Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, Freising, Germany.
Yeast. 2008 Nov;25(11):787-98. doi: 10.1002/yea.1633.
A reliable identification system for closely related species of the genera Issatchenkia and Pichia was established, using artificial neural network-based Fourier-transform infrared (FTIR) spectroscopy; 16 common Pichia species and all five known Issatchenkia species were included. A total of 238 strains isolated from a large variety of habitats were used as reference strains to generate an artificial neural network (ANN) identification system. This system consists of 10 single subnets connected to an ANN with four consecutive levels. An internal validation of the system, using unknown spectra of each reference strain, yielded an identification rate of 99.2%. To evaluate the performance of the ANN in routine diagnostics, 1608 spectra of 179 strains unknown to the ANN were used as a test dataset in an external validation. An overall identification rate of 98.6%, including a success rate of 100% for two common species, P. anomala and P. membranifaciens, demonstrates considerable potential of this FTIR-based artificial neural network for the identification of closely related yeast species.
利用基于人工神经网络的傅里叶变换红外(FTIR)光谱法,建立了一种用于伊萨酵母属和毕赤酵母属近缘物种的可靠鉴定系统;该系统涵盖了16种常见的毕赤酵母物种和所有5种已知的伊萨酵母物种。从各种生境中分离出的总共238株菌株用作参考菌株,以生成一个人工神经网络(ANN)鉴定系统。该系统由10个单子网组成,这些单子网与一个具有四个连续层级的人工神经网络相连。使用每个参考菌株的未知光谱对该系统进行内部验证,鉴定率为99.2%。为了评估人工神经网络在常规诊断中的性能,将人工神经网络未知的179株菌株的1608个光谱用作外部验证的测试数据集。总体鉴定率为98.6%,其中两种常见物种异常毕赤酵母和膜醭毕赤酵母的成功率为100%,这表明这种基于傅里叶变换红外光谱的人工神经网络在鉴定近缘酵母物种方面具有相当大的潜力。