Suppr超能文献

基础疾病对创伤患者医院质量测量的影响。

The effect of preexisting conditions on hospital quality measurement for injured patients.

机构信息

Department of Anesthesiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.

出版信息

Ann Surg. 2010 Apr;251(4):728-34. doi: 10.1097/SLA.0b013e3181d56770.

Abstract

OBJECTIVE

To determine whether adjusting for comorbidities significantly affects hospital quality measurement compared with adjusting for injury severity alone.

BACKGROUND

Pre-existing conditions have a significant impact on mortality after injury. The impact of including comorbidities on hospital quality measurement is not well understood.

METHODS

Retrospective cohort study using the Healthcare Cost and Utilization Project Nationwide Inpatient Sample (2005-2006). The Trauma Mortality Probability Model (TMPM-ICD9) was re-estimated with and without the addition of the comorbidity measures in the Agency for Health Research and Quality comorbidity algorithm. Hospital quality was measured using an adjusted odds ratio (OR) obtained using hierarchical logistic regression modeling. The OR quantifies the likelihood that trauma patients treated at a specific hospital are more or less likely to die compared with patients treated at an average hospital. Hospitals with an adjusted OR significantly greater than, or less than 1 were classified as low-quality or high-quality outliers, respectively. Pairwise comparison of hospital quality based on TMPM-ICD9 with and without comorbidity information were performed using the intraclass correlation coefficient, the Spearman correlation coefficient, the Bland-Altman Plot, and the kappa statistic.

RESULTS

There was nearly perfect agreement between hospital ranking based on TMPM-ICD9 and TMPM-ICD9 with comorbidities. The intraclass correlation coefficient was 0.943 (95% CI, 0.931-0.951), the Spearman correlation coefficient was 0.953 (95% CI, 0.944-0.960), and the kappa statistic was 0.863 (95% CI, 0.792-0.934). The odds of a patient dying in the worst 5% hospitals was 1.73 (95% CI, 1.61-1.86), whereas the odds of a patient dying in the best 5% of the hospitals was 0.37 (95% CI, 0.31-0.44).

CONCLUSION

In this large study of 148,280 trauma patients in 511 hospitals, we found no evidence that adding comorbidites to the risk-adjustment model used to benchmark hospital performance changes hospital ranking. In addition, there appears to be significant variability in mortality outcomes between the best and worst performing hospitals. This difference in outcomes across hospitals may represent a significant opportunity to improve health outcomes for injured patients.

摘要

目的

确定与仅调整损伤严重程度相比,调整合并症是否显著影响医院质量测量。

背景

预先存在的疾病对受伤后的死亡率有重大影响。合并症对医院质量测量的影响尚不清楚。

方法

使用医疗保健成本和利用项目全国住院患者样本(2005-2006 年)进行回顾性队列研究。使用创伤死亡率概率模型(TMPM-ICD9)重新估算,方法是在 Agency for Health Research and Quality 合并症算法中添加合并症测量值。使用分层逻辑回归建模获得的调整比值比(OR)来测量医院质量。OR 量化了在特定医院接受治疗的创伤患者与在平均医院接受治疗的患者相比死亡的可能性更大或更小。调整 OR 明显大于或小于 1 的医院被归类为低质量或高质量异常值。使用组内相关系数、斯皮尔曼相关系数、Bland-Altman 图和kappa 统计对基于 TMPM-ICD9 与不包括合并症信息的医院质量进行两两比较。

结果

基于 TMPM-ICD9 和 TMPM-ICD9 与合并症的医院排名之间几乎完全一致。组内相关系数为 0.943(95%CI,0.931-0.951),斯皮尔曼相关系数为 0.953(95%CI,0.944-0.960),kappa 统计量为 0.863(95%CI,0.792-0.934)。患者在最差的 5%医院死亡的几率为 1.73(95%CI,1.61-1.86),而患者在最佳的 5%医院死亡的几率为 0.37(95%CI,0.31-0.44)。

结论

在这项针对 511 家医院的 148280 名创伤患者的大型研究中,我们没有发现将合并症添加到用于基准医院绩效的风险调整模型中会改变医院排名的证据。此外,在表现最好和最差的医院之间,死亡率结果似乎存在显著差异。医院之间结果的这种差异可能代表了改善受伤患者健康结果的重要机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验