Suppr超能文献

一项关于传染病的 PubMed 全范围关联研究。

A PubMed-wide associational study of infectious diseases.

机构信息

Centre for Health Informatics, University of New South Wales, Sydney, New South Wales, Australia.

出版信息

PLoS One. 2010 Mar 10;5(3):e9535. doi: 10.1371/journal.pone.0009535.

Abstract

BACKGROUND

Computational discovery is playing an ever-greater role in supporting the processes of knowledge synthesis. A significant proportion of the more than 18 million manuscripts indexed in the PubMed database describe infectious disease syndromes and various infectious agents. This study is the first attempt to integrate online repositories of text-based publications and microbial genome databases in order to explore the dynamics of relationships between pathogens and infectious diseases.

METHODOLOGY/PRINCIPAL FINDINGS: Herein we demonstrate how the knowledge space of infectious diseases can be computationally represented and quantified, and tracked over time. The knowledge space is explored by mapping of the infectious disease literature, looking at dynamics of literature deposition, zooming in from pathogen to genome level and searching for new associations. Syndromic signatures for different pathogens can be created to enable a new and clinically focussed reclassification of the microbial world. Examples of syndrome and pathogen networks illustrate how multilevel network representations of the relationships between infectious syndromes, pathogens and pathogen genomes can illuminate unexpected biological similarities in disease pathogenesis and epidemiology.

CONCLUSIONS/SIGNIFICANCE: This new approach based on text and data mining can support the discovery of previously hidden associations between diseases and microbial pathogens, clinically relevant reclassification of pathogenic microorganisms and accelerate the translational research enterprise.

摘要

背景

计算发现正在为支持知识综合过程发挥越来越大的作用。在 PubMed 数据库中索引的 1800 多万篇文献中,有很大一部分描述了传染病综合征和各种传染病原体。本研究首次尝试整合基于文本的出版物在线知识库和微生物基因组数据库,以探索病原体和传染病之间关系的动态变化。

方法/主要发现:本文展示了如何对传染病的知识空间进行计算表示和量化,并随着时间推移进行跟踪。通过对传染病文献的映射来探索知识空间,观察文献沉积的动态,从病原体层面深入到基因组层面,并寻找新的关联。可以为不同病原体创建综合征特征,从而实现对微生物世界的全新、以临床为重点的重新分类。传染病和病原体网络的例子说明了传染病综合征、病原体和病原体基因组之间关系的多层次网络表示如何可以阐明疾病发病机制和流行病学中意想不到的生物学相似性。

结论/意义:这种基于文本和数据挖掘的新方法可以支持发现疾病与微生物病原体之间以前隐藏的关联,对致病性微生物进行临床相关的重新分类,并加速转化研究事业。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c4c/2835740/fb8b08fa68a9/pone.0009535.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验