MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
Food Microbiol. 2019 Aug;81:63-75. doi: 10.1016/j.fm.2018.04.011. Epub 2018 Apr 21.
Information on food microbial diversity is scattered across millions of scientific papers. Researchers need tools to assist their bibliographic search in such large collections. Text mining and knowledge engineering methods are useful to automatically and efficiently find relevant information in Life Science. This work describes how the Alvis text mining platform has been applied to a large collection of PubMed abstracts of scientific papers in the food microbiology domain. The information targeted by our work is microorganisms, their habitats and phenotypes. Two knowledge resources, the NCBI taxonomy and the OntoBiotope ontology were used to detect this information in texts. The result of the text mining process was indexed and is presented through the AlvisIR Food on-line semantic search engine. In this paper, we also show through two illustrative examples the great potential of this new tool to assist in studies on ecological diversity and the origin of microbial presence in food.
有关食品微生物多样性的信息分散在数以百万计的科学文献中。研究人员需要工具来协助他们在如此庞大的文献集中进行文献检索。文本挖掘和知识工程方法对于在生命科学领域中自动、高效地查找相关信息非常有用。本工作描述了 Alvis 文本挖掘平台如何应用于食品微生物学领域的大量 PubMed 摘要科学文献的集合。我们的工作目标信息是微生物、它们的栖息地和表型。我们使用了两个知识资源,NCBI 分类法和 OntoBiotope 本体,来检测文本中的这些信息。文本挖掘过程的结果被索引,并通过 AlvisIR Food 在线语义搜索引擎呈现。在本文中,我们还通过两个示例展示了这个新工具在研究生态多样性和微生物在食品中存在的起源方面的巨大潜力。