Suppr超能文献

不同临床 DTI 梯度设置对小世界脑连接测量的效果和可重复性。

The effect and reproducibility of different clinical DTI gradient sets on small world brain connectivity measures.

机构信息

Department of Radiology, Maastricht University Medical Centre, Maastricht, the Netherlands.

出版信息

Neuroimage. 2010 Jul 1;51(3):1106-16. doi: 10.1016/j.neuroimage.2010.03.011. Epub 2010 Mar 11.

Abstract

Advances in computational network analysis have enabled the characterization of topological properties in large scale networks including the human brain. Information on structural networks in the brain can be obtained in-vivo by performing tractography on diffusion tensor imaging (DTI) data. However, little is known about the reproducibility of network properties derived from whole brain tractography data, which has important consequences for minimally detectable abnormalities or changes over time. Moreover, acquisition parameters, such as the number of gradient directions and gradient strength, possibly influence network metrics and the corresponding reproducibility derived from tractography data. The aim of the present study is twofold: (i) to determine the effect of several clinically available DTI sampling schemes, differing in number of gradient directions and gradient amplitude, on small world metrics and (ii) to evaluate the interscan reproducibility of small world metrics. DTI experiments were conducted on six healthy volunteers scanned twice. Probabilistic tractography was performed to reconstruct structural connections between regions defined from an anatomical atlas. The observed reproducibility of the network measures was high, reflected by low values for the coefficient of variation (<3.8%), advocating the use of graph theoretical measurements to study neurological diseases. Small world metrics were dependent on the choice of DTI gradient scheme and showed stronger connectivity with increasing directional resolution. The interscan reproducibility was not dependent on the gradient scheme. These findings should be considered when comparing results across studies using different gradient schemes or designing new studies.

摘要

计算网络分析的进展使得对大规模网络的拓扑性质进行特征描述成为可能,包括人脑。通过在弥散张量成像(DTI)数据上进行轨迹追踪,可以获得大脑结构网络的信息。然而,人们对源自全脑追踪数据的网络性质的可重复性知之甚少,这对最小可检测异常或随时间变化具有重要意义。此外,采集参数,如梯度方向和梯度强度的数量,可能会影响来自轨迹追踪数据的网络指标和相应的可重复性。本研究的目的有两个:(i)确定几种临床可用的 DTI 采样方案(在梯度方向和梯度幅度上有所不同)对小世界度量的影响,以及(ii)评估小世界度量的扫描间可重复性。对六名健康志愿者进行了两次 DTI 实验扫描。使用来自解剖图谱的区域定义来进行概率性轨迹追踪,以重建结构连接。观察到网络测量的可重复性很高,这反映了变异系数(<3.8%)的低值,这表明可以使用图论测量来研究神经疾病。小世界度量取决于 DTI 梯度方案的选择,并且随着方向分辨率的增加而显示出更强的连接性。扫描间可重复性与梯度方案无关。在使用不同梯度方案比较研究结果或设计新研究时,应考虑这些发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验