Suppr超能文献

基于小波包变换和邻域粗糙集的肿瘤分类方法。

A method of tumor classification based on wavelet packet transforms and neighborhood rough set.

机构信息

Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei, Anhui 230031, China.

出版信息

Comput Biol Med. 2010 Apr;40(4):430-7. doi: 10.1016/j.compbiomed.2010.02.007. Epub 2010 Mar 12.

Abstract

Tumor classification is an important application domain of gene expression data. Because of its characteristics of high dimensionality and small sample size (SSS), and a great number of redundant genes not related to tumor phenotypes, various feature extraction or gene selection methods have been applied to gene expression data analysis. Wavelet packet transforms (WPT) and neighborhood rough sets (NRS) are effective tools to extract and select features. In this paper, a novel approach of tumor classification is proposed based on WPT and NRS. First the classification features are extracted by WPT and the decision tables are formed, then the attributes of the decision tables are reduced by NRS. Thirdly, a feature subset with few attributes and high classification ability is obtained. The experimental results on three gene expression datasets demonstrate that the proposed method is effective and feasible.

摘要

肿瘤分类是基因表达数据的一个重要应用领域。由于其具有高维性和小样本量(SSS)的特点,以及大量与肿瘤表型无关的冗余基因,因此已经应用了各种特征提取或基因选择方法来进行基因表达数据分析。小波包变换(WPT)和邻域粗糙集(NRS)是提取和选择特征的有效工具。本文提出了一种基于 WPT 和 NRS 的肿瘤分类新方法。首先通过 WPT 提取分类特征并形成决策表,然后通过 NRS 对决策表的属性进行约简。最后,得到一个具有较少属性和较高分类能力的特征子集。在三个基因表达数据集上的实验结果表明,该方法是有效且可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验