Department of Signal Theory, Networking and Communications, University of Granada, fuentenueva s/n, Granada, Spain.
Neurosci Lett. 2010 Apr 19;474(1):58-62. doi: 10.1016/j.neulet.2010.03.010. Epub 2010 Mar 19.
This paper presents a novel method for automatic selection of regions of interest (ROIs) of functional brain images based on Gaussian mixture models (GMM), which relieves the so-called small size sample problem in the classification of functional brain images for the diagnosis of Alzheimer's disease (AD). In a first step, brain images are preprocessed in order to find an average image including differences between controls and AD patients. Then, ROIs are extracted using a GMM which is adjusted by using the expectation maximization (EM) algorithm. This reduced set of features provides the activation map of each patient and allows us to train statistical classifiers based on support vector machines (SVMs). The leave-one-out cross-validation technique is used to validate the results obtained by the supervised learning-based computer aided diagnosis (CAD) system over databases of SPECT and PET images yielding an accuracy rate up to 96.67%.
本文提出了一种基于高斯混合模型(GMM)的自动选择功能脑图像感兴趣区域(ROI)的新方法,该方法缓解了用于阿尔茨海默病(AD)诊断的功能脑图像分类中的所谓小样本问题。在第一步中,对脑图像进行预处理,以找到包括对照组和 AD 患者之间差异的平均图像。然后,使用期望最大化(EM)算法调整 GMM 来提取 ROI。这个特征的缩减集提供了每个患者的激活图,并允许我们基于支持向量机(SVM)训练统计分类器。使用留一交叉验证技术验证基于监督学习的计算机辅助诊断(CAD)系统在 SPECT 和 PET 图像数据库上的结果,准确率高达 96.67%。