Suppr超能文献

基于隐马尔可夫随机场和高斯分布的F-DMFP-PET数据预处理

Preprocessing of F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution.

作者信息

Segovia Fermín, Górriz Juan M, Ramírez Javier, Martínez-Murcia Francisco J, Salas-Gonzalez Diego

机构信息

Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain.

Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.

出版信息

Front Aging Neurosci. 2017 Oct 9;9:326. doi: 10.3389/fnagi.2017.00326. eCollection 2017.

Abstract

F-DMFP-PET is an emerging neuroimaging modality used to diagnose Parkinson's disease (PD) that allows us to examine postsynaptic dopamine receptors. Like other neuroimaging modalities used for PD diagnosis, most of the total intensity of F-DMFP-PET images is concentrated in the striatum. However, other regions can also be useful for diagnostic purposes. An appropriate delimitation of the regions of interest contained in F-DMFP-PET data is crucial to improve the automatic diagnosis of PD. In this manuscript we propose a novel methodology to preprocess F-DMFP-PET data that improves the accuracy of computer aided diagnosis systems for PD. First, the data were segmented using an algorithm based on Hidden Markov Random Field. As a result, each neuroimage was divided into 4 maps according to the intensity and the neighborhood of the voxels. The maps were then individually normalized so that the shape of their histograms could be modeled by a Gaussian distribution with equal parameters for all the neuroimages. This approach was evaluated using a dataset with neuroimaging data from 87 parkinsonian patients. After these preprocessing steps, a Support Vector Machine classifier was used to separate idiopathic and non-idiopathic PD. Data preprocessed by the proposed method provided higher accuracy results than the ones preprocessed with previous approaches.

摘要

F-DMFP-PET是一种新兴的神经成像模态,用于诊断帕金森病(PD),它能让我们检查突触后多巴胺受体。与用于PD诊断的其他神经成像模态一样,F-DMFP-PET图像的总强度大部分集中在纹状体。然而,其他区域对诊断也可能有用。对F-DMFP-PET数据中感兴趣区域进行适当界定对于提高PD的自动诊断至关重要。在本手稿中,我们提出了一种新颖的方法来预处理F-DMFP-PET数据,以提高PD计算机辅助诊断系统的准确性。首先,使用基于隐马尔可夫随机场的算法对数据进行分割。结果,每个神经图像根据体素的强度和邻域被分为4个图谱。然后对这些图谱分别进行归一化处理,以便其直方图的形状可以用一个对所有神经图像具有相同参数的高斯分布来建模。使用一个包含87名帕金森病患者神经成像数据的数据集对该方法进行了评估。经过这些预处理步骤后,使用支持向量机分类器来区分特发性和非特发性PD。用所提出的方法预处理后的数据比用以前的方法预处理后的数据提供了更高的准确率结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/580b/5640782/eb2987c80664/fnagi-09-00326-g0001.jpg

相似文献

1
Preprocessing of F-DMFP-PET Data Based on Hidden Markov Random Fields and the Gaussian Distribution.
Front Aging Neurosci. 2017 Oct 9;9:326. doi: 10.3389/fnagi.2017.00326. eCollection 2017.
2
Multivariate Analysis of F-DMFP PET Data to Assist the Diagnosis of Parkinsonism.
Front Neuroinform. 2017 Mar 30;11:23. doi: 10.3389/fninf.2017.00023. eCollection 2017.
4
The dopamine D2 receptor ligand 18F-desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkinsonism.
Eur J Nucl Med Mol Imaging. 2004 Aug;31(8):1128-35. doi: 10.1007/s00259-004-1465-5. Epub 2004 Mar 23.
8
A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI.
Front Neuroinform. 2017 Nov 21;11:66. doi: 10.3389/fninf.2017.00066. eCollection 2017.

引用本文的文献

2
Random forest analysis of midbrain hypometabolism using [F]-FDG PET identifies Parkinson's disease at the subject-level.
Front Comput Neurosci. 2024 Feb 7;18:1328699. doi: 10.3389/fncom.2024.1328699. eCollection 2024.
4
Biomarkers in amyotrophic lateral sclerosis: current status and future prospects.
Nat Rev Neurol. 2023 Dec;19(12):754-768. doi: 10.1038/s41582-023-00891-2. Epub 2023 Nov 10.
7

本文引用的文献

1
Simultaneous Tumor Segmentation, Image Restoration, and Blur Kernel Estimation in PET Using Multiple Regularizations.
Comput Vis Image Underst. 2017 Feb;155:173-194. doi: 10.1016/j.cviu.2016.10.002. Epub 2016 Oct 6.
2
Multivariate Analysis of F-DMFP PET Data to Assist the Diagnosis of Parkinsonism.
Front Neuroinform. 2017 Mar 30;11:23. doi: 10.3389/fninf.2017.00023. eCollection 2017.
4
Dopamine receptor mapping with PET imaging in Parkinson's disease.
J Neurol. 2014 Dec;261(12):2251-63. doi: 10.1007/s00415-014-7302-2. Epub 2014 Mar 15.
5
Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes.
Neuroimage Clin. 2013 Jun 14;2:883-93. doi: 10.1016/j.nicl.2013.06.004. eCollection 2013.
6
Reference cluster normalization improves detection of frontotemporal lobar degeneration by means of FDG-PET.
PLoS One. 2013;8(2):e55415. doi: 10.1371/journal.pone.0055415. Epub 2013 Feb 25.
7
PRoNTo: pattern recognition for neuroimaging toolbox.
Neuroinformatics. 2013 Jul;11(3):319-37. doi: 10.1007/s12021-013-9178-1.
8
Linear intensity normalization of FP-CIT SPECT brain images using the α-stable distribution.
Neuroimage. 2013 Jan 15;65:449-55. doi: 10.1016/j.neuroimage.2012.10.005. Epub 2012 Oct 11.
9
Automatic assistance to Parkinson's disease diagnosis in DaTSCAN SPECT imaging.
Med Phys. 2012 Oct;39(10):5971-80. doi: 10.1118/1.4742055.
10
New strategy for automatic tumor segmentation by adaptive thresholding on PET/CT images.
J Appl Clin Med Phys. 2012 Sep 6;13(5):3875. doi: 10.1120/jacmp.v13i5.3875.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验