Suppr超能文献

计量税、多分类构造和比较曲线拟合指数:一项蒙特卡罗分析。

Taxometrics, polytomous constructs, and the comparison curve fit index: a Monte Carlo analysis.

机构信息

Psychology Services, Federal Correctional Institution, Schuylkill, Minersville, PA 17954-0700, USA.

出版信息

Psychol Assess. 2010 Mar;22(1):149-56. doi: 10.1037/a0017819.

Abstract

The taxometric method effectively distinguishes between dimensional (1-class) and taxonic (2-class) latent structure, but there is virtually no information on how it responds to polytomous (3-class) latent structure. A Monte Carlo analysis showed that the mean comparison curve fit index (CCFI; Ruscio, Haslam, & Ruscio, 2006) obtained with 3 taxometric procedures-mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode)-accurately identified 1-class (dimensional) and 2-class (taxonic) samples and produced taxonic results when applied to 3-class (polytomous) samples. From these results it is concluded that using the simulated data curve approach and averaging across procedures is an effective way of distinguishing between dimensional (1-class) and categorical (2 or more classes) latent structure.

摘要

-taxometric 方法有效地区分了维度(1 类)和分类(2 类)潜在结构,但实际上没有关于它如何响应多类(3 类)潜在结构的信息。一项蒙特卡罗分析表明,使用 3 种分类程序(均值高于和低于切割点法(MAMBAC)、最大协方差法(MAXCOV)和潜在模式因子分析(L-Mode))获得的均值比较曲线拟合指数(CCFI;Ruscio、Haslam 和 Ruscio,2006)准确地识别了 1 类(维度)和 2 类(分类)样本,并在应用于 3 类(多类)样本时产生了分类结果。根据这些结果可以得出结论,使用模拟数据曲线方法并对程序进行平均是区分维度(1 类)和分类(2 类或更多类)潜在结构的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验