Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5857-62. doi: 10.1073/pnas.0909570107. Epub 2010 Mar 15.
Insulin-like growth factors (IGFs) stimulate myoblast proliferation and differentiation. It remains elusive how these mutually exclusive cellular responses are elicited by the same growth factor. Here we report that whereas IGF promotes myoblast differentiation under normoxia, it stimulates proliferation under hypoxia. Hypoxia activates the HIF-1 transcriptional program and knockdown of HIF-1alpha changes the mitogenic action of IGF into myogenic action under hypoxia. Conversely, overexpression of HIF-1alpha abolishes the myogenic effect of IGF under normoxia. Under normoxia, IGF activates the Akt-mTOR, p38, and Erk1/2 MAPK pathways. Hypoxia suppresses basal and IGF-induced Akt-mTOR and p38 activity, whereas it enhances and prolongs IGF-induced Erk1/2 activation in a HIF-1-dependent fashion. Activation of Akt-mTOR and p38 promotes myogenesis, and p38 also inhibits proliferation. Activation of Erk stimulates myoblast proliferation but inhibits differentiation. These results suggest that hypoxia converts the myogenic action of IGFs into mitogenic action by differentially regulating multiple signaling pathways via HIF-1-dependent mechanisms. Our findings provide a mechanistic explanation for the paradoxical actions of IGFs during myogenesis and reveal a novel mechanism by which cells sense and integrate growth factor signals and oxygen availability in their microenvironments.
胰岛素样生长因子 (IGFs) 可刺激成肌细胞增殖和分化。目前仍不清楚相同的生长因子如何引发这些相互排斥的细胞反应。在这里,我们报告说 IGF 在常氧条件下促进成肌细胞分化,但在缺氧条件下刺激增殖。缺氧激活 HIF-1 转录程序,并且敲低 HIF-1α 将 IGF 的有丝分裂作用改变为缺氧下的成肌作用。相反,HIF-1α 的过表达在常氧条件下消除了 IGF 的成肌作用。在常氧条件下,IGF 激活 Akt-mTOR、p38 和 Erk1/2 MAPK 途径。缺氧抑制基础和 IGF 诱导的 Akt-mTOR 和 p38 活性,而以 HIF-1 依赖的方式增强和延长 IGF 诱导的 Erk1/2 激活。Akt-mTOR 和 p38 的激活促进成肌作用,而 p38 也抑制增殖。Erk 的激活刺激成肌细胞增殖,但抑制分化。这些结果表明,缺氧通过通过 HIF-1 依赖机制差异调节多种信号通路,将 IGFs 的成肌作用转化为有丝分裂作用。我们的研究结果为 IGFs 在成肌过程中的矛盾作用提供了机制解释,并揭示了细胞在其微环境中感知和整合生长因子信号和氧气可用性的新机制。