Suppr超能文献

缺氧诱导的能量应激调节mRNA翻译和细胞生长。

Hypoxia-induced energy stress regulates mRNA translation and cell growth.

作者信息

Liu Liping, Cash Timothy P, Jones Russell G, Keith Brian, Thompson Craig B, Simon M Celeste

机构信息

Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.

出版信息

Mol Cell. 2006 Feb 17;21(4):521-31. doi: 10.1016/j.molcel.2006.01.010.

Abstract

Oxygen (O2) deprivation, or hypoxia, has profound effects on cell metabolism and growth. Cells can adapt to low O2 in part through activation of hypoxia-inducible factor (HIF). We report here that hypoxia inhibits mRNA translation by suppressing multiple key regulators, including eIF2alpha, eEF2, and the mammalian target of rapamycin (mTOR) effectors 4EBP1, p70S6K, and rpS6, independent of HIF. Hypoxia results in energy starvation and activation of the AMPK/TSC2/Rheb/mTOR pathway. Hypoxic AMP-activated protein kinase (AMPK) activation also leads to eEF2 inhibition. Moreover, hypoxic effects on cellular bioenergetics and mTOR inhibition increase over time. Mutation of the TSC2 tumor suppressor gene confers a growth advantage to cells by repressing hypoxic mTOR inhibition and hypoxia-induced G1 arrest. Together, eIF2alpha, eEF2, and mTOR inhibition represent important HIF-independent mechanisms of energy conservation that promote survival under low O2 conditions.

摘要

缺氧,即氧(O2)剥夺,对细胞代谢和生长具有深远影响。细胞可部分通过缺氧诱导因子(HIF)的激活来适应低氧环境。我们在此报告,缺氧通过抑制包括真核生物翻译起始因子2α(eIF2α)、真核生物延伸因子2(eEF2)以及雷帕霉素靶蛋白(mTOR)效应分子4EBP1、p70S6K和核糖体蛋白S6(rpS6)在内的多个关键调节因子,独立于HIF抑制mRNA翻译。缺氧导致能量饥饿并激活AMPK/TSC2/Rheb/mTOR信号通路。缺氧激活的AMP激活蛋白激酶(AMPK)也会导致eEF2受到抑制。此外,缺氧对细胞生物能量学和mTOR的抑制作用会随着时间的推移而增强。TSC2肿瘤抑制基因的突变通过抑制缺氧诱导的mTOR抑制和缺氧诱导的G1期阻滞,赋予细胞生长优势。总之,eIF2α、eEF2和mTOR的抑制代表了在低氧条件下促进细胞存活的重要的不依赖HIF的能量节约机制。

相似文献

1
Hypoxia-induced energy stress regulates mRNA translation and cell growth.
Mol Cell. 2006 Feb 17;21(4):521-31. doi: 10.1016/j.molcel.2006.01.010.
6
A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets.
J Biol Chem. 2003 Aug 8;278(32):29655-60. doi: 10.1074/jbc.M212770200. Epub 2003 May 30.
7
RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
Cell Signal. 2014 Mar;26(3):461-7. doi: 10.1016/j.cellsig.2013.11.035. Epub 2013 Dec 3.
8
Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner.
J Mol Cell Biol. 2014 Jun;6(3):255-66. doi: 10.1093/jmcb/mju008. Epub 2014 Mar 13.
9
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling.
Genes Dev. 2003 Aug 1;17(15):1829-34. doi: 10.1101/gad.1110003. Epub 2003 Jul 17.

引用本文的文献

1
Metabolic Plasticity and Transcriptomic Reprogramming Orchestrate Hypoxia Adaptation in Yak.
Animals (Basel). 2025 Jul 15;15(14):2084. doi: 10.3390/ani15142084.
2
Cardiomyocytes in Hypoxia: Cellular Responses and Implications for Cell-Based Cardiac Regenerative Therapies.
Bioengineering (Basel). 2025 Feb 6;12(2):154. doi: 10.3390/bioengineering12020154.
3
Adaptation of Natural Killer Cells to Hypoxia: A Review of the Transcriptional, Translational, and Metabolic Processes.
Immunotargets Ther. 2025 Feb 18;14:99-121. doi: 10.2147/ITT.S492334. eCollection 2025.
4
Polydatin enhances oxaliplatin-induced cell death by activating NOX5-ROS-mediated DNA damage and ER stress in colon cancer cells.
Front Pharmacol. 2025 Jan 9;15:1532695. doi: 10.3389/fphar.2024.1532695. eCollection 2024.
5
Autophagy activation alleviates annulus fibrosus degeneration via the miR-2355-5p/mTOR pathway.
J Orthop Surg Res. 2025 Jan 23;20(1):86. doi: 10.1186/s13018-025-05492-x.
6
7
Epi-microRNA mediated metabolic reprogramming counteracts hypoxia to preserve affinity maturation.
Nat Commun. 2024 Dec 3;15(1):10516. doi: 10.1038/s41467-024-54937-0.
8
Stress response regulation of mRNA translation: Implications for antioxidant enzyme expression in cancer.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2317846121. doi: 10.1073/pnas.2317846121. Epub 2024 Nov 4.
9
Reciprocal Dynamics of Metabolism and mRNA Translation in Tumor Angiogenesis.
Int J Mol Sci. 2024 Oct 20;25(20):11284. doi: 10.3390/ijms252011284.
10
Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets.
Int J Mol Sci. 2024 Oct 9;25(19):10835. doi: 10.3390/ijms251910835.

本文引用的文献

1
Control of the hypoxic response through regulation of mRNA translation.
Semin Cell Dev Biol. 2005 Aug-Oct;16(4-5):487-501. doi: 10.1016/j.semcdb.2005.03.009.
2
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint.
Mol Cell. 2005 Apr 29;18(3):283-93. doi: 10.1016/j.molcel.2005.03.027.
4
mTOR, translational control and human disease.
Semin Cell Dev Biol. 2005 Feb;16(1):29-37. doi: 10.1016/j.semcdb.2004.11.005. Epub 2004 Dec 31.
5
The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway.
J Biol Chem. 2005 Mar 18;280(11):9769-72. doi: 10.1074/jbc.C400557200. Epub 2005 Jan 4.
6
REDD1 integrates hypoxia-mediated survival signaling downstream of phosphatidylinositol 3-kinase.
Oncogene. 2005 Feb 10;24(7):1138-49. doi: 10.1038/sj.onc.1208236.
7
Lessons from the Eker rat model: from cage to bedside.
Curr Mol Med. 2004 Dec;4(8):799-806. doi: 10.2174/1566524043359791.
9
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.
Genes Dev. 2004 Dec 1;18(23):2893-904. doi: 10.1101/gad.1256804. Epub 2004 Nov 15.
10
Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity.
Mol Cell Biol. 2004 Sep;24(18):7965-75. doi: 10.1128/MCB.24.18.7965-7975.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验