Suppr超能文献

竞争者在异质景观中的共存和扩散。

Coexistence and spread of competitors in heterogeneous landscapes.

机构信息

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, ON K1N 6N5, Canada.

出版信息

Bull Math Biol. 2010 Nov;72(8):2089-112. doi: 10.1007/s11538-010-9529-0. Epub 2010 Mar 16.

Abstract

Competition between species is ubiquitous in nature and therefore widely studied in ecology through experiment and theory. One of the central questions is under which conditions a (rare) invader can establish itself in a landscape dominated by a resident species at carrying capacity. Applying the same question with the roles of the invader and resident reversed leads to the principle that "mutual invasibility implies coexistence." A related but different question is how fast a locally introduced invader spreads into a landscape (with or without competing resident), provided it can invade. We explore some aspects of these questions in a deterministic, spatially explicit model for two competing species with discrete non-overlapping generations in a patchy periodic environment. We obtain threshold values for fragmentation levels and dispersal distances that allow for mutual invasion and coexistence even if the non-spatial competition model predicts competitive exclusion. We obtain exact results when dispersal is governed by a Laplace kernel. Using the average dispersal success, we develop a mathematical framework to obtain approximate results that are independent of the exact dispersal patterns, and we show numerically that these approximations are very accurate.

摘要

物种间的竞争在自然界中普遍存在,因此在生态学中通过实验和理论广泛研究。其中一个核心问题是在什么条件下,(稀有)入侵者可以在承载能力下由居民物种主导的景观中建立自己的地位。将相同的问题应用于入侵者和居民角色反转,就会得出“相互入侵意味着共存”的原则。一个相关但不同的问题是,在有或没有竞争居民的情况下,一个本地引入的入侵者在景观中传播的速度有多快,前提是它可以入侵。我们在一个确定的、空间明确的模型中探索了这些问题的一些方面,该模型适用于具有离散非重叠世代的两种竞争物种,在斑块状周期性环境中。我们获得了允许相互入侵和共存的碎片水平和扩散距离的阈值,即使非空间竞争模型预测竞争排斥。当扩散受拉普拉斯核控制时,我们获得了确切的结果。使用平均扩散成功率,我们开发了一个数学框架来获得独立于精确扩散模式的近似结果,并通过数值显示这些近似值非常准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验