在具有形貌和化学结构纳米化的表面上囊泡的吸附和磷脂双层的形成。

Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces.

机构信息

Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.

出版信息

J Phys Chem B. 2010 Apr 8;114(13):4623-31. doi: 10.1021/jp908283g.

Abstract

We have investigated the influence of combined nanoscale topography and surface chemistry on lipid vesicle adsorption and supported bilayer formation on well-controlled model surfaces. To this end, we utilized colloidal lithography to nanofabricate pitted Au-SiO(2) surfaces, where the top surface and the walls of the pits consisted of silicon dioxide whereas the bottom of the pits was made of gold. The diameter and height of the pits were fixed at 107 and 25 nm, respectively. Using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique and atomic force microscopy (AFM), we monitored the processes occurring upon exposure of these nanostructured surfaces to a solution of extruded unilamellar 1-palmitolyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles with a nominal diameter of 100 nm. To scrutinize the influence of surface chemistry, we studied two cases: (1) the bare gold surface at the bottom of the pits and (2) the gold passivated by biotinamidocaproyl-labeled bovine serum albumin (BBSA) prior to vesicle exposure. As in our previous work on pitted silicon dioxide surfaces, we found that the pit edges promote bilayer formation on the SiO(2) surface for the vesicle size used here in both cases. Whereas in the first case we observed a slow, continuous adsorption of intact vesicles onto the gold surface at the bottom of the pits, the presence of BBSA in the second case prevented the adsorption of intact vesicles into the pits. Instead, our experimental results, together with free energy calculations for various potential membrane configurations, indicate the formation of a continuous, supported lipid bilayer that spans across the pits. These results are significantly important for various biotechnology applications utilizing patterned lipid bilayers and highlight the power of the combined QCM-D/AFM approach to study the mechanism of lipid bilayer formation on nanostructured surfaces.

摘要

我们研究了纳米级形貌和表面化学性质对脂质体吸附和在可控模型表面形成支撑双层的影响。为此,我们利用胶体光刻技术在金-二氧化硅(Au-SiO2)表面上纳米图案化,其中表面和坑壁由二氧化硅组成,而坑底由金制成。坑的直径和高度分别固定为 107nm 和 25nm。我们使用石英晶体微天平(QCM-D)技术和原子力显微镜(AFM),监测这些纳米结构表面暴露于挤出的单层 1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)脂质体溶液中发生的过程,这些脂质体的名义直径为 100nm。为了仔细研究表面化学性质的影响,我们研究了两种情况:(1)坑底的裸露金表面,(2)在暴露于脂质体之前用生物素酰胺基己酰基标记牛血清白蛋白(BBSA)修饰的金表面。与我们之前关于有坑二氧化硅表面的工作一样,我们发现对于这里使用的脂质体尺寸,坑边缘在 SiO2 表面上促进双层形成。在第一种情况下,我们观察到完整的脂质体在坑底的金表面上缓慢、连续地吸附,而在第二种情况下,BBSA 的存在阻止了完整的脂质体进入坑中。相反,我们的实验结果,以及各种潜在膜结构的自由能计算,表明在整个坑中形成了连续的、支撑的脂质双层。这些结果对于利用图案化脂质双层的各种生物技术应用非常重要,并突出了 QCM-D/AFM 方法在研究纳米结构表面上脂质双层形成机制方面的强大功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索