Suppr超能文献

协同质子-电子转移:电化学及相关方法。

Concerted proton-electron transfers: electrochemical and related approaches.

机构信息

Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université-CNRS No 7591, Université Paris Diderot, Bâtiment Lavoisier, 15 rue Jean de Baif, 75205 Paris Cedex 13, France.

出版信息

Acc Chem Res. 2010 Jul 20;43(7):1019-29. doi: 10.1021/ar9002812.

Abstract

Proton-coupled electron transfers (PCETs) are omnipresent in natural and artificial chemical processes. Given the contemporary challenges associated with energy conversion, pollution abatement, and the development of high-performance sensors, a greater understanding of the mechanisms that underlie the practical efficiency of PCETs is a timely research topic. In contrast to hydrogen-atom transfers, proton and electron transfers involve different centers in PCET reactions. The reaction may go through an electron- or proton-transfer intermediate, giving rise to the electron-proton transfer (EPT) and the proton-electron transfer (PET) pathways. When the proton and electron transfers are concerted (the CPET pathway), the high-energy intermediates of the stepwise pathways are bypassed, although this thermodynamic benefit may have a kinetic cost. The primary task of kinetics-based mechanism analysis is therefore to distinguish the three pathways, quantifying the factors that govern the competition between them, which requires modeling of CPET reactivity. CPET models of varying sophistication have appeared, but the large number of parameters involved and the uncertainty of the quantum chemical calculations they may have to resort to make experimental confrontation and inspiration a necessary component of model testing and refinement. Electrochemical PCETs are worthy of particular attention, if only because most applications in which PCET mechanisms are operative involve collection or injection of electricity through electrodes. More fundamentally, changing the electrode potential is an easy and continuous means of varying the driving force of the reaction, whereas the current flowing through the electrode is a straightforward measure of its rate. Consequently, the current-potential response in nondestructive techniques (such as cyclic voltammetry) can be read as an activation-driving force relationship, provided the contribution of diffusion has been taken into account. Intrinsic properties (properties at zero driving force) are consequently a natural outcome of the electrochemical approach. In this Account, we begin by examining the modeling of CPET reactions and then describe illustrating experimental examples inspired by two biological systems, photosystem II and superoxide dismutase. One series of studies examined the oxidation of phenols with, as proton acceptor, either an attached nitrogen base or water (in water as solvent). Another addressed interconversion of aquo-hydroxo-oxo couples of transition metal complexes, using osmium complexes as prototypes. Finally, the reduction of superoxide ion, which is closely related to its dismutation, allowed the observation and rationalization of the remarkable properties of water as a proton donor. Water is also an exceptional proton acceptor in the oxidation of phenols, requiring very small reorganization energies, both in the electrochemical and homogeneous cases. These varied examples reveal general features of PCET reactions that may serve as guidelines for future studies, suggesting that research emphasis might be profitably directed toward new biological systems on the one hand and on the role of hydrogen bonding and hydrogen-bonded environments (such as water or proteins) on the other.

摘要

质子耦合电子转移(PCET)在自然和人工化学过程中无处不在。鉴于当前能源转换、污染减排和高性能传感器开发所面临的挑战,更深入地了解 PCET 实际效率背后的机制是一个及时的研究课题。与氢原子转移不同,质子和电子转移涉及 PCET 反应中的不同中心。反应可能经过电子或质子转移中间体,从而产生电子-质子转移(EPT)和质子-电子转移(PET)途径。当质子和电子转移协同进行(CPET 途径)时,分步途径的高能中间体被绕过,尽管这种热力学优势可能具有动力学成本。因此,基于动力学的机制分析的主要任务是区分这三种途径,量化控制它们之间竞争的因素,这需要 CPET 反应性的建模。已经出现了各种复杂程度的 CPET 模型,但涉及的参数数量众多,并且可能需要诉诸量子化学计算的不确定性,这使得实验对比和启发成为模型测试和改进的必要组成部分。电化学 PCET 值得特别关注,如果仅仅是因为在 PCET 机制起作用的大多数应用中,通过电极收集或注入电流。更根本的是,改变电极电势是改变反应驱动力的一种简单且连续的方法,而通过电极的电流是其速率的直接度量。因此,在无损技术(如循环伏安法)中的电流-电势响应可以被解读为活化驱动力关系,前提是已经考虑了扩散的贡献。因此,电化学方法的固有特性(零驱动力特性)是自然的结果。在本综述中,我们首先检查 CPET 反应的建模,然后描述受两个生物系统(光合作用系统 II 和超氧化物歧化酶)启发的实验示例。一系列研究考察了酚类化合物的氧化,质子受体是附着的氮碱基或水(在水中作为溶剂)。另一个研究了过渡金属配合物的水合-羟合-氧合配合物的相互转化,使用锇配合物作为原型。最后,观察并合理化了超氧离子还原的惊人性质,超氧离子还原与歧化密切相关,表明水作为质子供体的性质非常特殊。水在酚类化合物的氧化中也是一种特殊的质子受体,无论是在电化学还是均相情况下,都需要非常小的重组能。这些不同的例子揭示了 PCET 反应的一般特征,这些特征可以作为未来研究的指导,这表明研究重点可能一方面受益于新的生物系统,另一方面受益于氢键和氢键环境(如水或蛋白质)的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验