Zhongshan University, The School of Mathematics and Computational Science, Guangzhou, People's Republic of China.
IET Syst Biol. 2010 Mar;4(2):99-107. doi: 10.1049/iet-syb.2009.0006.
Aberrant gene functions usually contribute to the pathology or diseases. Avoiding undesirable cellular phenotypes as many as possible is a major purpose of external control for gene regulatory networks. An interesting question is how to control a gene network subjected to the condition that the genes reach some undesirable states with minimal probability during a cell cycle. In this paper, we make use of the theory of the first passage model for discrete-time Markov decision processes to determine the optimal control for a gene intervention model. Specifically, we first use a control model for a probabilistic Boolean network to model interactions among genes and then solve an optimal control problem for maximising the probability of the first arrival time to desirable gene states. In order to illustrate the validity of our approach, examples are also displayed.
异常基因功能通常会导致病理或疾病。尽可能避免不良的细胞表型是基因调控网络外部控制的主要目的。一个有趣的问题是,如何在基因在细胞周期中以最小概率达到某些不良状态的情况下,对基因网络进行控制。在本文中,我们利用离散时间马尔可夫决策过程的首次通过模型理论来确定基因干预模型的最优控制。具体来说,我们首先使用概率布尔网络的控制模型来模拟基因之间的相互作用,然后解决最大化到达期望基因状态的首次到达时间概率的最优控制问题。为了说明我们方法的有效性,还展示了示例。