Suppr超能文献

从给定的转移概率矩阵生成概率布尔网络。

Generating probabilistic Boolean networks from a prescribed transition probability matrix.

机构信息

The University of Hong Kong, Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, Hong Kong.

出版信息

IET Syst Biol. 2009 Nov;3(6):453-64. doi: 10.1049/iet-syb.2008.0173.

Abstract

Probabilistic Boolean networks (PBNs) have received much attention in modeling genetic regulatory networks. A PBN can be regarded as a Markov chain process and is characterised by a transition probability matrix. In this study, the authors propose efficient algorithms for constructing a PBN when its transition probability matrix is given. The complexities of the algorithms are also analysed. This is an interesting inverse problem in network inference using steady-state data. The problem is important as most microarray data sets are assumed to be obtained from sampling the steady-state.

摘要

概率布尔网络(PBN)在遗传调控网络建模中受到广泛关注。PBN 可以看作是马尔可夫链过程,其特点是转移概率矩阵。在这项研究中,作者提出了一种当转移概率矩阵给定时构建 PBN 的有效算法,并分析了算法的复杂度。这是使用稳态数据进行网络推断的一个有趣的反问题。该问题很重要,因为大多数微阵列数据集都被假定是从稳态采样获得的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验