Suppr超能文献

概率布尔网络中的吸引子分布与计数。

Distribution and enumeration of attractors in probabilistic Boolean networks.

机构信息

Kyoto University, Institute for Chemical Research, Bioinformatics Center, Kyoto, JapanThe University of Hong Kong, Advanced Modelling and Applied Computing Laboratory, Department of Mathematics, Hong Kong.

出版信息

IET Syst Biol. 2009 Nov;3(6):465-74. doi: 10.1049/iet-syb.2008.0177.

Abstract

Many mathematical models for gene regulatory networks have been proposed. In this study, the authors study attractors in probabilistic Boolean networks (PBNs). They study the expected number of singleton attractors in a PBN and show that it is (2 - (1/2)(L-1))(n), where n is the number of nodes in a PBN and L is the number of Boolean functions assigned to each node. In the case of L=2, this number is simplified into 1.5(n). It is an interesting result because it is known that the expected number of singleton attractors in a Boolean network (BN) is 1. Then, we present algorithms for identifying singleton and small attractors and perform both theoretical and computational analyses on their average case time complexities. For example, the average case time complexities for identifying singleton attractors of a PBN with L=2 and L=3 are O(1.601(n)) and O(1.763(n)), respectively. The results of computational experiments suggest that these algorithms are much more efficient than the naive algorithm that examines all possible 2(n) states.

摘要

已经提出了许多用于基因调控网络的数学模型。在这项研究中,作者研究了概率布尔网络(PBN)中的吸引子。他们研究了 PBN 中单吸引子的期望数量,并表明它是(2 - (1/2)(L-1))(n),其中 n 是 PBN 中的节点数,L 是分配给每个节点的布尔函数数。在 L=2 的情况下,这个数字简化为 1.5(n)。这是一个有趣的结果,因为已知布尔网络(BN)中单吸引子的期望数量是 1。然后,我们提出了用于识别单吸引子和小吸引子的算法,并对它们的平均情况时间复杂度进行了理论和计算分析。例如,具有 L=2 和 L=3 的 PBN 的单吸引子的平均情况时间复杂度分别为 O(1.601(n)) 和 O(1.763(n))。计算实验的结果表明,这些算法比检查所有可能的 2(n)状态的简单算法效率高得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验