Suppr超能文献

铜应激通过破坏枯草芽孢杆菌中 [Fe-S]簇的形成来影响铁稳态。

Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis.

机构信息

Department of Chemistry-Biochemistry, Philipps University Marburg, Hans-Meerwein-Str., D-35032 Marburg, Germany.

出版信息

J Bacteriol. 2010 May;192(10):2512-24. doi: 10.1128/JB.00058-10. Epub 2010 Mar 16.

Abstract

Copper and iron are essential elements for cellular growth. Although bacteria have to overcome limitations of these metals by affine and selective uptake, excessive amounts of both metals are toxic for the cells. Here we investigated the influences of copper stress on iron homeostasis in Bacillus subtilis, and we present evidence that copper excess leads to imbalances of intracellular iron metabolism by disturbing assembly of iron-sulfur cofactors. Connections between copper and iron homeostasis were initially observed in microarray studies showing upregulation of Fur-dependent genes under conditions of copper excess. This effect was found to be relieved in a csoR mutant showing constitutive copper efflux. In contrast, stronger Fur-dependent gene induction was found in a copper efflux-deficient copA mutant. A significant induction of the PerR regulon was not observed under copper stress, indicating that oxidative stress did not play a major role under these conditions. Intracellular iron and copper quantification revealed that the total iron content was stable during different states of copper excess or efflux and hence that global iron limitation did not account for copper-dependent Fur derepression. Strikingly, the microarray data for copper stress revealed a broad effect on the expression of genes coding for iron-sulfur cluster biogenesis (suf genes) and associated pathways such as cysteine biosynthesis and genes coding for iron-sulfur cluster proteins. Since these effects suggested an interaction of copper and iron-sulfur cluster maturation, a mutant with a conditional mutation of sufU, encoding the essential iron-sulfur scaffold protein in B. subtilis, was assayed for copper sensitivity, and its growth was found to be highly susceptible to copper stress. Further, different intracellular levels of SufU were found to influence the strength of Fur-dependent gene expression. By investigating the influence of copper on cluster-loaded SufU in vitro, Cu(I) was found to destabilize the scaffolded cluster at submicromolar concentrations. Thus, by interfering with iron-sulfur cluster formation, copper stress leads to enhanced expression of cluster scaffold and target proteins as well as iron and sulfur acquisition pathways, suggesting a possible feedback strategy to reestablish cluster biogenesis.

摘要

铜和铁是细胞生长所必需的元素。尽管细菌必须通过亲和和选择性摄取来克服这些金属的限制,但这两种金属的过量对细胞都是有毒的。在这里,我们研究了铜胁迫对枯草芽孢杆菌铁稳态的影响,并提出了证据表明,铜过量通过干扰铁硫辅因子的组装,导致细胞内铁代谢失衡。在微阵列研究中最初观察到铜和铁稳态之间的联系,表明在铜过量条件下 Fur 依赖性基因的上调。在铜外排缺陷型 copA 突变体中发现,这种效应得到缓解,而在铜外排能力组成型的 csoR 突变体中则发现 Fur 依赖性基因的诱导更强。在铜胁迫下,并未观察到 PerR 调控子的显著诱导,表明在这些条件下氧化应激没有发挥主要作用。细胞内铁和铜的定量分析表明,在不同的铜过量或外排状态下,总铁含量保持稳定,因此全局铁限制不是铜依赖性 Fur 去阻遏的原因。引人注目的是,铜胁迫的微阵列数据显示,对编码铁硫簇生物发生(suf 基因)和相关途径(如半胱氨酸生物合成和编码铁硫簇蛋白的基因)的基因的表达有广泛的影响。由于这些影响表明铜和铁-硫簇成熟之间存在相互作用,因此检测了条件性 sufU 突变体(编码枯草芽孢杆菌必需的铁-硫支架蛋白)的铜敏感性,发现其生长对铜胁迫高度敏感。此外,不同的细胞内 SufU 水平被发现会影响 Fur 依赖性基因表达的强度。通过研究铜对体外加载簇的 SufU 的影响,发现 Cu(I) 在亚微摩尔浓度下即可使支架化簇不稳定。因此,通过干扰铁-硫簇的形成,铜胁迫会导致簇支架和靶蛋白以及铁和硫获取途径的表达增强,这表明可能存在一种反馈策略来重新建立簇生物发生。

相似文献

1
Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis.
J Bacteriol. 2010 May;192(10):2512-24. doi: 10.1128/JB.00058-10. Epub 2010 Mar 16.
2
SufU is an essential iron-sulfur cluster scaffold protein in Bacillus subtilis.
J Bacteriol. 2010 Mar;192(6):1643-51. doi: 10.1128/JB.01536-09. Epub 2010 Jan 22.
4
Mechanistic characterization of sulfur transfer from cysteine desulfurase SufS to the iron-sulfur scaffold SufU in Bacillus subtilis.
FEBS Lett. 2011 Feb 4;585(3):465-70. doi: 10.1016/j.febslet.2011.01.005. Epub 2011 Jan 12.
7
Protective role of bacillithiol in superoxide stress and Fe-S metabolism in Bacillus subtilis.
Microbiologyopen. 2015 Aug;4(4):616-31. doi: 10.1002/mbo3.267. Epub 2015 May 18.

引用本文的文献

1
Regulatory Characterization of Two Cop Systems for Copper Resistance in .
Int J Mol Sci. 2025 Aug 22;26(17):8172. doi: 10.3390/ijms26178172.
2
Comparison of single bacteria and a bacterial reference community in a test against coated surfaces of varying copper content.
Front Microbiol. 2025 Aug 26;16:1659828. doi: 10.3389/fmicb.2025.1659828. eCollection 2025.
4
Synergistic Effect of Essential Oils and Rhamnolipid on Subsp. .
Microorganisms. 2025 May 17;13(5):1153. doi: 10.3390/microorganisms13051153.
5
Uncovering nitroxoline activity spectrum, mode of action and resistance across Gram-negative bacteria.
Nat Commun. 2025 Apr 22;16(1):3783. doi: 10.1038/s41467-025-58730-5.
6
Role of a TonB-dependent receptor and an oxygenase in iron-dependent copper resistance in .
J Bacteriol. 2025 Apr 17;207(4):e0049324. doi: 10.1128/jb.00493-24. Epub 2025 Mar 14.
7
A clinical study showing the expression characteristics of cuproptosis markers in cases with Wilson disease.
Medicine (Baltimore). 2024 Nov 22;103(47):e40598. doi: 10.1097/MD.0000000000040598.
8
Copper homeostasis and pregnancy complications: a comprehensive review.
J Assist Reprod Genet. 2025 Mar;42(3):707-720. doi: 10.1007/s10815-024-03375-4. Epub 2025 Jan 10.
9
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
10
8-Hydroxyquinoline Series Exerts Bactericidal Activity against Via Copper-Mediated Toxicity.
ACS Infect Dis. 2024 Oct 11;10(10):3692-3698. doi: 10.1021/acsinfecdis.4c00582. Epub 2024 Sep 27.

本文引用的文献

1
A community-curated consensual annotation that is continuously updated: the Bacillus subtilis centred wiki SubtiWiki.
Database (Oxford). 2009;2009:bap012. doi: 10.1093/database/bap012. Epub 2009 Sep 17.
2
SufU is an essential iron-sulfur cluster scaffold protein in Bacillus subtilis.
J Bacteriol. 2010 Mar;192(6):1643-51. doi: 10.1128/JB.01536-09. Epub 2010 Jan 22.
3
Structural basis and stereochemistry of triscatecholate siderophore binding by FeuA.
Angew Chem Int Ed Engl. 2009;48(42):7924-7. doi: 10.1002/anie.200902495.
4
The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity.
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8344-9. doi: 10.1073/pnas.0812808106. Epub 2009 May 4.
5
From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later.
Microbiology (Reading). 2009 Jun;155(Pt 6):1758-1775. doi: 10.1099/mic.0.027839-0. Epub 2009 Apr 21.
6
The Dps protein of Escherichia coli is involved in copper homeostasis.
Microbiol Res. 2010 Feb 28;165(2):108-15. doi: 10.1016/j.micres.2008.12.003. Epub 2009 Feb 20.
7
Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis.
J Bacteriol. 2009 Apr;191(7):2362-70. doi: 10.1128/JB.01616-08. Epub 2009 Jan 23.
8
How do bacterial cells ensure that metalloproteins get the correct metal?
Nat Rev Microbiol. 2009 Jan;7(1):25-35. doi: 10.1038/nrmicro2057.
9
A bacterial copper metallothionein.
Nat Chem Biol. 2008 Oct;4(10):582-3. doi: 10.1038/nchembio1008-582.
10
Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation.
J Bacteriol. 2008 Oct;190(20):6706-17. doi: 10.1128/JB.00450-08. Epub 2008 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验