Fachbereich Chemie/Biochemie der Philipps Universität Marburg, Hans-Meerwein-Str., D-35032 Marburg, Germany.
J Bacteriol. 2010 Mar;192(6):1643-51. doi: 10.1128/JB.01536-09. Epub 2010 Jan 22.
Bacteria use three distinct systems for iron-sulfur (Fe/S) cluster biogenesis: the ISC, SUF, and NIF machineries. The ISC and SUF systems are widely distributed, and many bacteria possess both of them. In Escherichia coli, ISC is the major and constitutive system, whereas SUF is induced under iron starvation and/or oxidative stress. Genomic analysis of the Fe/S cluster biosynthesis genes in Bacillus subtilis suggests that this bacterium's genome encodes only a SUF system consisting of a sufCDSUB gene cluster and a distant sufA gene. Mutant analysis of the putative Fe/S scaffold genes sufU and sufA revealed that sufU is essential for growth under minimal standard conditions, but not sufA. The drastic growth retardation of a conditional mutant depleted of SufU was coupled with a severe reduction of aconitase and succinate dehydrogenase activities in total-cell lysates, suggesting a crucial function of SufU in Fe/S protein biogenesis. Recombinant SufU was devoid of Fe/S clusters after aerobic purification. Upon in vitro reconstitution, SufU bound an Fe/S cluster with up to approximately 1.5 Fe and S per monomer. The assembled Fe/S cluster could be transferred from SufU to the apo form of isopropylmalate isomerase Leu1, rapidly forming catalytically active [4Fe-4S]-containing holo-enzyme. In contrast to native SufU, its D43A variant carried a Fe/S cluster after aerobic purification, indicating that the cluster is stabilized by this mutation. Further, we show that apo-SufU is an activator of the cysteine desulfurase SufS by enhancing its activity about 40-fold in vitro. SufS-dependent formation of holo-SufU suggests that SufU functions as an Fe/S cluster scaffold protein tightly cooperating with the SufS cysteine desulfurase.
细菌使用三种不同的系统来进行铁硫(Fe/S)簇生物发生:ISC、SUF 和 NIF 机制。ISC 和 SUF 系统广泛分布,许多细菌都拥有这两种系统。在大肠杆菌中,ISC 是主要的组成型系统,而 SUF 则在缺铁和/或氧化应激下诱导产生。枯草芽孢杆菌 Fe/S 簇生物发生基因的基因组分析表明,该细菌的基因组仅编码一个由 sufCDSUB 基因簇和一个遥远的 sufA 基因组成的 SUF 系统。对假定的 Fe/S 支架基因 sufU 和 sufA 的突变分析表明,sufU 在最低标准条件下的生长是必需的,但 sufA 不是。SufU 耗尽的条件突变体的生长严重迟缓与总细胞裂解物中 aconitase 和琥珀酸脱氢酶活性的严重降低有关,这表明 SufU 在 Fe/S 蛋白生物发生中具有关键功能。有氧纯化后的重组 SufU 不含 Fe/S 簇。在体外重建时,SufU 与每个单体结合多达约 1.5 个 Fe 和 S 的 Fe/S 簇。组装好的 Fe/S 簇可以从 SufU 转移到异丙基苹果酸异构酶 Leu1 的脱辅基形式,迅速形成具有催化活性的含 [4Fe-4S] 的全酶。与天然 SufU 不同,其 D43A 变体在有氧纯化后携带一个 Fe/S 簇,表明该突变稳定了该簇。此外,我们表明,apo-SufU 通过体外增强其活性约 40 倍,成为半胱氨酸脱硫酶 SufS 的激活剂。SufS 依赖性的 holo-SufU 形成表明 SufU 作为一种与 SufS 半胱氨酸脱硫酶紧密合作的 Fe/S 簇支架蛋白发挥作用。