Faculty of Psychology, Universitat de Barcelona, Spain.
Behav Modif. 2010 May;34(3):195-218. doi: 10.1177/0145445510363306. Epub 2010 Mar 16.
The current study proposes a new procedure for separately estimating slope change and level change between two adjacent phases in single-case designs. The procedure eliminates baseline trend from the whole data series before assessing treatment effectiveness. The steps necessary to obtain the estimates are presented in detail, explained, and illustrated. A simulation study is carried out to explore the bias and precision of the estimators and compare them to an analytical procedure matching the data simulation model. The experimental conditions include 2 data generation models, several degrees of serial dependence, trend, and level and/or slope change. The results suggest that the level and slope change estimates provided by the procedure are unbiased for all levels of serial dependence tested and trend is effectively controlled for. The efficiency of the slope change estimator is acceptable, whereas the variance of the level change estimator may be problematic for highly negatively autocorrelated data series.
本研究提出了一种新的程序,用于在单案例设计中分别估计两个相邻阶段之间的斜率变化和水平变化。该程序在评估治疗效果之前,从整个数据序列中消除基线趋势。详细介绍了获得估计值所需的步骤,并进行了说明和举例。进行了一项模拟研究,以探讨估计值的偏差和精度,并将其与匹配数据模拟模型的分析程序进行比较。实验条件包括 2 个数据生成模型、几个程度的序列相关性、趋势以及水平和/或斜率变化。结果表明,对于测试的所有序列相关性水平以及趋势得到有效控制,该程序提供的水平和斜率变化估计值是无偏的。斜率变化估计器的效率是可以接受的,而对于高度负自相关数据序列,水平变化估计器的方差可能存在问题。