Manolov Rumen, Moeyaert Mariola, Fingerhut Joelle E
Department de Psicologia Social i Psicologia Quantitativa, Universitat de Barcelona, Passeig de la Vall d´Hebron 171, 08035 Barcelona, Spain.
State University of New York at Albany, Albany, NY USA.
Perspect Behav Sci. 2021 Mar 25;45(1):153-186. doi: 10.1007/s40614-021-00282-2. eCollection 2022 Mar.
Due to the complex nature of single-case experimental design data, numerous effect measures are available to quantify and evaluate the effectiveness of an intervention. An inappropriate choice of the effect measure can result in a misrepresentation of the intervention effectiveness and this can have far-reaching implications for theory, practice, and policymaking. As guidelines for reporting appropriate justification for selecting an effect measure are missing, the first aim is to identify the relevant dimensions for effect measure selection and justification prior to data gathering. The second aim is to use these dimensions to construct a user-friendly flowchart or decision tree guiding applied researchers in this process. The use of the flowchart is illustrated in the context of a preregistered protocol. This is the first study that attempts to propose reporting guidelines to justify the effect measure choice, before collecting the data, to avoid selective reporting of the largest quantifications of an effect. A proper justification, less prone to confirmation bias, and transparent and explicit reporting can enhance the credibility of the single-case design study findings.
由于单病例实验设计数据的复杂性,有许多效应量度可用于量化和评估干预措施的有效性。效应量度选择不当可能导致对干预效果的错误表述,这可能对理论、实践和政策制定产生深远影响。由于缺少报告选择效应量度的适当理由的指南,首要目标是在数据收集之前确定效应量度选择和理由的相关维度。第二个目标是利用这些维度构建一个用户友好的流程图或决策树,在此过程中指导应用研究人员。在预先注册的方案背景下说明了流程图的使用。这是第一项试图提出报告指南,以便在收集数据之前为效应量度选择提供理由,以避免选择性报告最大效应量的研究。适当的理由、不易产生确认偏差以及透明和明确的报告可以提高单病例设计研究结果的可信度。