Suppr超能文献

准确模型与准确估计:贝叶斯单病例实验设计的模拟研究。

Accurate models vs. accurate estimates: A simulation study of Bayesian single-case experimental designs.

机构信息

Brunel University London, London, UK.

Department of Statistics, Northwestern University, Evanston, IL, USA.

出版信息

Behav Res Methods. 2021 Aug;53(4):1782-1798. doi: 10.3758/s13428-020-01522-0. Epub 2021 Feb 11.

Abstract

Although statistical practices to evaluate intervention effects in single-case experimental design (SCEDs) have gained prominence in recent times, models are yet to incorporate and investigate all their analytic complexities. Most of these statistical models incorporate slopes and autocorrelations, both of which contribute to trend in the data. The question that arises is whether in SCED data that show trend, there is indeterminacy between estimating slope and autocorrelation, because both contribute to trend, and the data have a limited number of observations. Using Monte Carlo simulation, we compared the performance of four Bayesian change-point models: (a) intercepts only (IO), (b) slopes but no autocorrelations (SI), (c) autocorrelations but no slopes (NS), and (d) both autocorrelations and slopes (SA). Weakly informative priors were used to remain agnostic about the parameters. Coverage rates showed that for the SA model, either the slope effect size or the autocorrelation credible interval almost always erroneously contained 0, and the type II errors were prohibitively large. Considering the 0-coverage and coverage rates of slope effect size, intercept effect size, mean relative bias, and second-phase intercept relative bias, the SI model outperformed all other models. Therefore, it is recommended that researchers favor the SI model over the other three models. Research studies that develop slope effect sizes for SCEDs should consider the performance of the statistic by taking into account coverage and 0-coverage rates. These helped uncover patterns that were not realized in other simulation studies. We underline the need for investigating the use of informative priors in SCEDs.

摘要

尽管在单案例实验设计(SCED)中评估干预效果的统计实践最近已经得到了重视,但模型尚未纳入并研究所有的分析复杂性。这些统计模型大多数都包含斜率和自相关,这两者都有助于数据的趋势。问题是,在显示趋势的 SCED 数据中,是否存在估计斜率和自相关之间的不确定性,因为两者都有助于趋势,并且数据的观测数量有限。我们使用蒙特卡罗模拟比较了四种贝叶斯变化点模型的性能:(a)仅截距(IO),(b)斜率但没有自相关(SI),(c)自相关但没有斜率(NS),和(d)自相关和斜率都有(SA)。使用弱信息先验来保持对参数的不可知论。覆盖率表明,对于 SA 模型,斜率效应大小或自相关可信区间几乎总是错误地包含 0,并且第二类错误非常大。考虑到 0 覆盖和斜率效应大小、截距效应大小、平均相对偏差和第二阶段截距相对偏差的覆盖率,SI 模型优于其他所有模型。因此,建议研究人员优先考虑 SI 模型而不是其他三个模型。为 SCED 开发斜率效应大小的研究应该考虑统计的性能,同时考虑覆盖率和 0 覆盖率。这些帮助揭示了在其他模拟研究中没有意识到的模式。我们强调了在 SCED 中调查使用信息先验的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/671d/8367899/e52ab7e1701c/13428_2020_1522_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验