Dipartimento di Chimica Fisica e Inorganica and INSTM, Università di Bologna viale Risorgimento 4, 40136 Bologna, Italy.
Chemphyschem. 2010 Apr 6;11(5):1018-28. doi: 10.1002/cphc.200900652.
The trans-cis photoisomerization of azobenzene-containing materials is key to a number of photomechanical applications, but the actual conversion mechanism in condensed phases is still largely unknown. Herein, we study the n, pi* isomerization in a vacuum and in various solvents via a modified molecular dynamics simulation adopting an ab initio torsion-inversion force field in the ground and excited states, while allowing for electronic transitions and a stochastic decay to the fundamental state. We determine the trans-cis photoisomerization quantum yield and decay times in various solvents (n-hexane, anisole, toluene, ethanol, and ethylene glycol), and obtain results comparable with experimental ones where available. A profound difference between the isomerization mechanism in vacuum and in solution is found, with the often neglected mixed torsional-inversion pathway being the most important in solvents.
含偶氮苯材料的(trans-cis)光致异构化是许多光机械应用的关键,但在凝聚相中实际的转换机制在很大程度上仍不清楚。在此,我们通过采用从头算扭转反转力场的改进分子动力学模拟,在真空和各种溶剂中研究了 n, pi* 异构化,同时允许电子跃迁和随机衰减到基态。我们确定了各种溶剂(正己烷、苯甲醚、甲苯、乙醇和乙二醇)中的(trans-cis)光致异构化量子产率和衰减时间,并在可用时获得了与实验结果可比的结果。我们发现,在真空中和溶液中的异构化机制有很大的不同,通常被忽视的混合扭转反转途径在溶剂中是最重要的。