Suppr超能文献

模拟吲哚在水溶液中吸收和荧光光谱的溶剂化效应。

Modeling solvation effects on absorption and fluorescence spectra of indole in aqueous solution.

机构信息

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.

Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA.

出版信息

J Chem Phys. 2021 Feb 14;154(6):064104. doi: 10.1063/5.0038342.

Abstract

Modeling the optical spectra of molecules in solution presents a challenge, so it is important to understand which of the solvation effects (i.e., electrostatics, mutual polarization, and hydrogen bonding interactions between solute and solvent molecules) are crucial in reproducing the various features of the absorption and fluorescence spectra and to identify a sufficient theoretical model that accurately captures these effects with minimal computational cost. In this study, we use various implicit and explicit solvation models, such as molecular dynamics coupled with non-polarizable and polarizable force fields, as well as Car-Parrinello molecular dynamics, to model the absorption and fluorescence spectra of indole in aqueous solution. The excited states are computed using the equation of motion coupled cluster with single and double excitations combined with the effective fragment potential to represent water molecules, which we found to be a computationally efficient approach for modeling large solute-solvent clusters at a high level of quantum theory. We find that modeling mutual polarization, compared to other solvation effects, is a dominating factor for accurately reproducing the position of the peaks and spectral line shape of the absorption spectrum of indole in solution. We present an in-depth analysis of the influence that different solvation models have on the electronic excited states responsible for the features of the absorption spectra. Modeling fluorescence is more challenging since it is hard to reproduce even the correct emitting state, and force field parameters need to be re-evaluated.

摘要

在溶液中对分子的光学光谱进行建模是一项挑战,因此了解哪种溶剂化效应(即静电、相互极化和溶质与溶剂分子之间的氢键相互作用)对于重现吸收和荧光光谱的各种特征至关重要,并确定一个足够的理论模型,以最小的计算成本准确捕捉这些效应。在这项研究中,我们使用了各种隐式和显式溶剂化模型,如分子动力学与非极化和极化力场相结合,以及 Car-Parrinello 分子动力学,来模拟吲哚在水溶液中的吸收和荧光光谱。使用运动方程耦合单重激发和双重激发与有效片段势来计算激发态,以代表水分子,我们发现这是一种在量子理论的高水平上对大的溶质-溶剂团簇进行建模的计算高效方法。我们发现,与其他溶剂化效应相比,相互极化的建模是准确重现吲哚在溶液中吸收光谱的峰位置和光谱线形的主导因素。我们对不同溶剂化模型对吸收光谱特征的电子激发态的影响进行了深入分析。荧光的建模更具挑战性,因为即使是正确的发射态也很难重现,并且需要重新评估力场参数。

相似文献

本文引用的文献

8
Tinker 8: Software Tools for Molecular Design.Tinker 8:分子设计软件工具。
J Chem Theory Comput. 2018 Oct 9;14(10):5273-5289. doi: 10.1021/acs.jctc.8b00529. Epub 2018 Sep 19.
9
Evaluating excited state atomic polarizabilities of chromophores.评估发色团的激发态原子极化率。
Phys Chem Chem Phys. 2018 Mar 28;20(13):8554-8563. doi: 10.1039/c7cp08549d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验