Suppr超能文献

国际淋巴管肌瘤病注册中心:一个基于网络的、由临床医生、研究人员和患者驱动的创新罕见病研究平台的组成部分。

The International LAM Registry: a component of an innovative web-based clinician, researcher, and patient-driven rare disease research platform.

作者信息

Nurok Michael, Eslick Ian, Carvalho Carlos R R, Costabel Ulrich, D'Armiento Jeanine, Glanville Allan R, Harari Sergio, Henske Elizabeth P, Inoue Yoshikazu, Johnson Simon R, Lacronique Jacques, Lazor Romain, Moss Joel, Ruoss Stephen J, Ryu Jay H, Seyama Kuniaki, Watz Henrik, Xu Kai-Feng, Hohmann Elizabeth L, Moss Frank

机构信息

Division of Surgical Critical Care, Cardiac and Thoracic Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Lymphat Res Biol. 2010 Mar;8(1):81-7. doi: 10.1089/lrb.2009.0028.

Abstract

BACKGROUND

A relative inability to capture a sufficiently large patient population in any one geographic location has traditionally limited research into rare diseases.

METHODS AND RESULTS

Clinicians interested in the rare disease lymphangioleiomyomatosis (LAM) have worked with the LAM Treatment Alliance, the MIT Media Lab, and Clozure Associates to cooperate in the design of a state-of-the-art data coordination platform that can be used for clinical trials and other research focused on the global LAM patient population. This platform is a component of a set of web-based resources, including a patient self-report data portal, aimed at accelerating research in rare diseases in a rigorous fashion.

CONCLUSIONS

Collaboration between clinicians, researchers, advocacy groups, and patients can create essential community resource infrastructure to accelerate rare disease research. The International LAM Registry is an example of such an effort. 82.

摘要

背景

传统上,在任何一个地理位置都相对无法招募到足够多的患者群体,这限制了对罕见病的研究。

方法与结果

对罕见病淋巴管平滑肌瘤病(LAM)感兴趣的临床医生与LAM治疗联盟、麻省理工学院媒体实验室和Clozure Associates合作,共同设计了一个先进的数据协调平台,该平台可用于针对全球LAM患者群体的临床试验和其他研究。这个平台是一系列基于网络的资源的组成部分,包括一个患者自我报告数据门户,旨在以严谨的方式加速罕见病研究。

结论

临床医生、研究人员、倡导团体和患者之间的合作可以创建重要的社区资源基础设施,以加速罕见病研究。国际LAM注册中心就是这种努力的一个例子。82

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验