Suppr超能文献

采用左心室、肝脏和一份静脉血样进行简化[18F]FDG 图像衍生的输入函数。

Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample.

机构信息

Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Mol Imaging. 2010 Apr;9(2):76-86.

Abstract

A relatively simple, almost entirely noninvasive imaging-based method is presented for deriving arterial blood input functions for quantitative [(18)F]2-fluoro-2-deoxy-d-glucose (FDG) positron emission tomographic (PET) studies in rodents. It requires only one venous blood sample at the end of the scan. MicroPET images and arterial blood time-activity curves (TACs) were downloaded from the Mouse Quantitation Program database at the University of California, Los Angeles. Three-dimensional regions of interest were drawn around the blood-pool region of the left ventricle and within the liver to derive their respective TACs. To construct the "hybrid" image-derived input function (IDIF), the initial part of the left ventricle TAC, containing the peak concentration of [(18)F]FDG in the arterial blood, was corrected for spillout (ie, partial-volume effect yielding a recovery coefficient < 1) and then joined to the liver TAC (normalized to the 60-minute arterial blood sample) immediately after it peaks. To validate our method, the [(18)F]FDG influx constant (K(i)) was estimated using a two-tissue compartment model and compared to estimates of K(i) obtained using measured arterial blood TACs. No significant difference in the K(i) estimates was obtained with the arterial blood input function and our hybrid IDIF. We conclude that the normalized hybrid IDIF can be used in practice to obtain reliable K(i) estimates.

摘要

本文提出了一种相对简单、几乎完全无创的基于成像的方法,用于从啮齿动物定量 [(18)F]2-氟-2-脱氧-d-葡萄糖(FDG)正电子发射断层扫描(PET)研究中推导出动脉血液输入函数。它只需要在扫描结束时采集一次静脉血样本。MicroPET 图像和动脉血液时间-活性曲线(TAC)从加利福尼亚大学洛杉矶分校的 Mouse Quantitation Program 数据库中下载。在左心室的血池区域和肝脏内绘制三维感兴趣区域,以得出各自的 TAC。为了构建“混合”图像衍生输入函数(IDIF),左心室 TAC 的初始部分包含动脉血液中 [(18)F]FDG 的峰值浓度,经过校正溢出(即部分容积效应导致恢复系数 <1),然后与肝脏 TAC 连接(归一化为 60 分钟的动脉血样本),在其达到峰值后立即连接。为了验证我们的方法,使用两组织室模型估计了 [(18)F]FDG 流入常数(K(i)),并将其与使用测量的动脉血液 TAC 获得的 K(i)估计值进行了比较。使用动脉血液输入函数和我们的混合 IDIF 获得的 K(i)估计值没有显著差异。我们得出结论,归一化的混合 IDIF 可在实践中用于获得可靠的 K(i)估计值。

相似文献

2
Noninvasive estimation of the input function for dynamic mouse 18F-FDG microPET studies.
IEEE Trans Biomed Eng. 2013 Nov;60(11):3103-12. doi: 10.1109/TBME.2013.2267778. Epub 2013 Jun 19.
4
Improved derivation of input function in dynamic mouse [18F]FDG PET using bladder radioactivity kinetics.
Mol Imaging Biol. 2013 Aug;15(4):486-96. doi: 10.1007/s11307-013-0610-6.
7
An input function estimation method for FDG-PET human brain studies.
Nucl Med Biol. 2007 Jul;34(5):483-92. doi: 10.1016/j.nucmedbio.2007.03.008.
8
Searching for alternatives to full kinetic analysis in 18F-FDG PET: an extension of the simplified kinetic analysis method.
J Nucl Med. 2011 Apr;52(4):634-41. doi: 10.2967/jnumed.110.079079. Epub 2011 Mar 18.
9
Noninvasive image derived heart input function for CMRglc measurements in small animal slow infusion FDG PET studies.
Phys Med Biol. 2012 Dec 7;57(23):8041-59. doi: 10.1088/0031-9155/57/23/8041. Epub 2012 Nov 16.

引用本文的文献

1
Assessment of image-derived input functions from small vessels for patlak parametric imaging using total-body PET/CT.
Eur J Nucl Med Mol Imaging. 2025 Jan;52(2):648-659. doi: 10.1007/s00259-024-06926-0. Epub 2024 Sep 26.
2
Characterization of a Syngeneic Orthotopic Model of Cholangiocarcinoma by [F]FDG-PET/MRI.
Cancers (Basel). 2024 Jul 19;16(14):2591. doi: 10.3390/cancers16142591.
3
Single time point quantitation of cerebral glucose metabolism by FDG-PET without arterial sampling.
EJNMMI Res. 2023 Nov 30;13(1):104. doi: 10.1186/s13550-023-01049-3.
6
Anesthesia and Preconditioning Induced Changes in Mouse Brain [F] FDG Uptake and Kinetics.
Mol Imaging Biol. 2019 Dec;21(6):1089-1096. doi: 10.1007/s11307-019-01314-9.
7
Determining Glucose Metabolism Kinetics Using 18F-FDG Micro-PET/CT.
J Vis Exp. 2017 May 2(123):55184. doi: 10.3791/55184.
8
Standardized Input Function for 18F-FDG PET Studies in Mice: A Cautionary Study.
PLoS One. 2017 Jan 26;12(1):e0168667. doi: 10.1371/journal.pone.0168667. eCollection 2017.
9
In vivo PET imaging with [(18)F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes.
Diabetologia. 2016 Sep;59(9):1977-84. doi: 10.1007/s00125-016-3993-5. Epub 2016 May 18.
10
[¹¹C]acetate and PET/CT assessment of muscle activation in rat studies.
Int J Comput Assist Radiol Surg. 2016 May;11(5):733-43. doi: 10.1007/s11548-015-1260-8. Epub 2015 Jul 26.

本文引用的文献

1
Quantification of cerebral glucose metabolic rate in mice using 18F-FDG and small-animal PET.
J Nucl Med. 2009 Jun;50(6):966-73. doi: 10.2967/jnumed.108.060533. Epub 2009 May 14.
2
Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies.
J Nucl Med. 2008 Apr;49(4):606-14. doi: 10.2967/jnumed.107.047613. Epub 2008 Mar 14.
3
Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data.
J Nucl Med. 2007 Dec;48(12):2037-45. doi: 10.2967/jnumed.107.041061. Epub 2007 Nov 15.
4
Hybrid image and blood sampling input function for quantification of small animal dynamic PET data.
Nucl Med Biol. 2007 Nov;34(8):989-94. doi: 10.1016/j.nucmedbio.2007.07.010. Epub 2007 Sep 19.
5
The application of maximum likelihood factor analysis (MLFA) with uniqueness constraints on dynamic cardiac microPET data.
Phys Med Biol. 2007 Apr 21;52(8):2313-34. doi: 10.1088/0031-9155/52/8/018. Epub 2007 Apr 2.
8
Measurement of input functions in rodents: challenges and solutions.
Nucl Med Biol. 2005 Oct;32(7):679-85. doi: 10.1016/j.nucmedbio.2005.06.012.
9
Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis.
IEEE Trans Biomed Eng. 2005 Feb;52(2):201-10. doi: 10.1109/TBME.2004.840193.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验