Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
Phys Med Biol. 2012 Dec 7;57(23):8041-59. doi: 10.1088/0031-9155/57/23/8041. Epub 2012 Nov 16.
Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [(18)F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach.
在正电子发射断层扫描 (PET) 研究中,可以通过对动脉 [(18)F]-氟代脱氧葡萄糖 (FDG) 输入进行连续测量来获得脑葡萄糖代谢率 (CMRglc) 的绝对定量。由于这在啮齿动物的 PET 研究中并不总是可行的,因此人们对通过在心脏左心室放置感兴趣区 (VOI) 来定义图像衍生输入函数 (IDIF) 产生了浓厚的兴趣。然而,由于 FDG 在心肌中的捕获,通常会导致 IDIF 的逐渐污染,这会导致 CMRglc 的幅度被低估。因此,我们开发了一种新颖的、非侵入性的方法,无需对样本进行缩放即可纠正 IDIF。为此,我们首先在一组 8 只麻醉大鼠中获得了连续的动脉样本和头部和心脏的动态 FDG-PET 数据。我们将双指数函数拟合到 IDIF 的连续测量值上,然后使用线性图形 Gjedde-Patlak 方法来描述心肌的积累。接下来,我们通过假设高斯点扩散函数来估计到达左心室 VOI 的心肌溢出量的大小,并对测量的 IDIF 进行校正以消除该估计的溢出量。最后,我们使用校正后的 IDIF 计算 CMRglc 的参数图,并为了进行比较,还与从股动脉连续采血的方法进行了比较。未校正的 IDIF 导致 CMRglc 的幅度相对于金标准动脉输入方法低估了 20%。但是,校正后的 IDIF 没有偏差,并且对心肌示踪剂摄取的可变程度具有鲁棒性,因此使用校正后的 IDIF 进行的个体 CMRglc 测量与金标准动脉输入结果之间具有非常高的相关性。基于模拟,我们还发现,使用我们的方法进行 IDIF 定量时,心电图门控(即 ECG 门控)不是必需的。