Suppr超能文献

两种朊病毒株会竞争有限的细胞资源而发生共感染。

Coinfecting prion strains compete for a limiting cellular resource.

机构信息

Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.

出版信息

J Virol. 2010 Jun;84(11):5706-14. doi: 10.1128/JVI.00243-10. Epub 2010 Mar 17.

Abstract

Prion strain interference can influence the emergence of a dominant strain from a mixture; however, the mechanisms underlying prion strain interference are poorly understood. In our model of strain interference, inoculation of the sciatic nerve with the drowsy (DY) strain of the transmissible mink encephalopathy (TME) agent prior to superinfection with the hyper (HY) strain of TME can completely block HY TME from causing disease. We show here that the deposition of PrP(Sc), in the absence of neuronal loss or spongiform change, in the central nervous system corresponds with the ability of DY TME to block HY TME infection. This suggests that DY TME agent-induced damage is not responsible for strain interference but rather prions compete for a cellular resource. We show that protein misfolding cyclic amplification (PMCA) of DY and HY TME maintains the strain-specific properties of PrP(Sc) and replicates infectious agent and that DY TME can interfere, or completely block, the emergence of HY TME. DY PrP(Sc) does not convert all of the available PrP(C) to PrP(Sc) in PMCA, suggesting the mechanism of prion strain interference is due to the sequestering of PrP(C) and/or other cellular components required for prion conversion. The emergence of HY TME in PMCA was controlled by the initial ratio of the TME agents. A higher ratio of DY to HY TME agent is required for complete blockage of HY TME in PMCA compared to several previous in vivo studies, suggesting that HY TME persists in animals coinfected with the two strains. This was confirmed by PMCA detection of HY PrP(Sc) in animals where DY TME had completely blocked HY TME from causing disease.

摘要

朊病毒株干扰可以影响优势株从混合物中的出现;然而,朊病毒株干扰的机制还了解甚少。在我们的株干扰模型中,在超感染(HY)传染性 mink 脑病(TME)剂之前,用昏昏欲睡(DY)株 TME 接种坐骨神经可以完全阻止 HY TME 引起疾病。我们在这里表明,在没有神经元丢失或海绵状变化的情况下,中枢神经系统中 PrP(Sc)的沉积与 DY TME 阻止 HY TME 感染的能力相对应。这表明 DY TME 剂诱导的损伤不是株干扰的原因,而是朊病毒竞争细胞资源。我们表明,DY 和 HY TME 的蛋白错误折叠循环扩增(PMCA)保持了 PrP(Sc)的株特异性特性,并复制了感染性剂,并且 DY TME 可以干扰或完全阻止 HY TME 的出现。DY PrP(Sc)在 PMCA 中不会将所有可用的 PrP(C)转化为 PrP(Sc),这表明朊病毒株干扰的机制是由于 PrP(C)和/或其他细胞成分的隔离,这些成分对于朊病毒转化是必需的。HY TME 在 PMCA 中的出现受 TME 剂初始比例的控制。与之前的几项体内研究相比,在 PMCA 中完全阻断 HY TME 需要更高比例的 DY 与 HY TME 剂,这表明 HY TME 在两种菌株共同感染的动物中持续存在。这通过 PMCA 检测到 DY TME 完全阻止 HY TME 引起疾病的动物中的 HY PrP(Sc)得到证实。

相似文献

1
Coinfecting prion strains compete for a limiting cellular resource.
J Virol. 2010 Jun;84(11):5706-14. doi: 10.1128/JVI.00243-10. Epub 2010 Mar 17.
2
Prion interference is due to a reduction in strain-specific PrPSc levels.
J Virol. 2007 Jan;81(2):689-97. doi: 10.1128/JVI.01751-06. Epub 2006 Nov 1.
5
Alteration of Prion Strain Emergence by Nonhost Factors.
mSphere. 2019 Oct 9;4(5):e00630-19. doi: 10.1128/mSphere.00630-19.
6
Prion strain targeting independent of strain-specific neuronal tropism.
J Virol. 2009 Jan;83(1):81-7. doi: 10.1128/JVI.01745-08. Epub 2008 Oct 29.
8
Incongruity between Prion Conversion and Incubation Period following Coinfection.
J Virol. 2016 May 27;90(12):5715-23. doi: 10.1128/JVI.00409-16. Print 2016 Jun 15.
10
Prion interference with multiple prion isolates.
Prion. 2008 Apr-Jun;2(2):61-3. doi: 10.4161/pri.2.2.6806. Epub 2008 Apr 18.

引用本文的文献

1
Co-infection with two α-synuclein strains reveals novel synergistic interactions.
bioRxiv. 2025 Aug 22:2025.08.17.670736. doi: 10.1101/2025.08.17.670736.
2
Evidence of a novel α-synuclein strain isolated from a Parkinson's disease with dementia patient sample.
Acta Neuropathol Commun. 2025 Aug 18;13(1):177. doi: 10.1186/s40478-025-02093-x.
3
The Evolution of Experimental Rodent Models for Prion Diseases.
J Neurochem. 2025 Mar;169(3):e70039. doi: 10.1111/jnc.70039.
4
Minor prion substrains overcome transmission barriers.
mBio. 2024 Nov 13;15(11):e0272124. doi: 10.1128/mbio.02721-24. Epub 2024 Oct 23.
5
Multiple aspects of amyloid dynamics integrate to establish prion variant dominance in yeast.
Front Mol Neurosci. 2024 Jul 30;17:1439442. doi: 10.3389/fnmol.2024.1439442. eCollection 2024.
6
Effect of host and strain factors on α-synuclein prion pathogenesis.
Trends Neurosci. 2024 Jul;47(7):538-550. doi: 10.1016/j.tins.2024.05.004. Epub 2024 May 27.
7
Evidence for preexisting prion substrain diversity in a biologically cloned prion strain.
PLoS Pathog. 2023 Sep 5;19(9):e1011632. doi: 10.1371/journal.ppat.1011632. eCollection 2023 Sep.
8
Development of a methodology for large-scale production of prions for biological and structural studies.
Front Mol Biosci. 2023 Aug 10;10:1184029. doi: 10.3389/fmolb.2023.1184029. eCollection 2023.
9
Innate Immune Status of Glia Modulates Prion Propagation in Early Stage of Infection.
Cells. 2023 Jul 18;12(14):1878. doi: 10.3390/cells12141878.
10
The G51D SNCA mutation generates a slowly progressive α-synuclein strain in early-onset Parkinson's disease.
Acta Neuropathol Commun. 2023 May 3;11(1):72. doi: 10.1186/s40478-023-01570-5.

本文引用的文献

1
Recombinant prion protein induces a new transmissible prion disease in wild-type animals.
Acta Neuropathol. 2010 Feb;119(2):177-87. doi: 10.1007/s00401-009-0633-x. Epub 2010 Jan 6.
2
Darwinian evolution of prions in cell culture.
Science. 2010 Feb 12;327(5967):869-72. doi: 10.1126/science.1183218. Epub 2009 Dec 31.
3
Continuous quinacrine treatment results in the formation of drug-resistant prions.
PLoS Pathog. 2009 Nov;5(11):e1000673. doi: 10.1371/journal.ppat.1000673. Epub 2009 Nov 26.
4
The role of glycophosphatidylinositol anchor in the amplification of the scrapie isoform of prion protein in vitro.
FEBS Lett. 2009 Nov 19;583(22):3671-5. doi: 10.1016/j.febslet.2009.10.049. Epub 2009 Oct 23.
6
Impaired axonal transport in motor neurons correlates with clinical prion disease.
PLoS Pathog. 2009 Aug;5(8):e1000558. doi: 10.1371/journal.ppat.1000558. Epub 2009 Aug 21.
7
Switching in amyloid structure within individual fibrils: implication for strain adaptation, species barrier and strain classification.
FEBS Lett. 2009 Aug 20;583(16):2618-22. doi: 10.1016/j.febslet.2009.05.044. Epub 2009 May 29.
8
Tunnelling nanotubes: a highway for prion spreading?
Prion. 2009 Apr-Jun;3(2):94-8. doi: 10.4161/pri.3.2.8917. Epub 2009 Apr 1.
9
Ultramicroscopy reveals axonal transport impairments in cortical motor neurons at prion disease.
Biophys J. 2009 Apr 22;96(8):3390-8. doi: 10.1016/j.bpj.2009.01.032.
10
Conformational switching within individual amyloid fibrils.
J Biol Chem. 2009 May 22;284(21):14386-95. doi: 10.1074/jbc.M900533200. Epub 2009 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验