Departments of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA.
J Neurosci. 2010 Mar 17;30(11):3870-5. doi: 10.1523/JNEUROSCI.4717-09.2010.
Aberrant accumulation of amyloid beta (Abeta) oligomers may underlie the cognitive failure of Alzheimer's disease (AD). All species of Abeta peptides are produced physiologically during normal brain activity. Therefore, elucidation of mechanisms that interconnect excitatory glutamatergic neurotransmission, synaptic amyloid precursor protein (APP) processing and production of its metabolite, Abeta, may reveal synapse-specific strategies for suppressing the pathological accumulation of Abeta oligomers and fibrils that characterize AD. To study synaptic APP processing, we used isolated intact nerve terminals (cortical synaptoneurosomes) from TgCRND8 mice, which express a human APP with familial AD mutations. Potassium chloride depolarization caused sustained release from synaptoneurosomes of Abeta(42) as well as Abeta(40), and appeared to coactivate alpha-, beta- and gamma-secretases, which are known to generate a family of released peptides, including Abeta(40) and Abeta(42). Stimulation of postsynaptic group I metabotropic glutamate receptor (mGluRs) with DHPG (3,5-dihydroxyphenylglycine) induced a rapid accumulation of APP C-terminal fragments (CTFs) in the synaptoneurosomes, a family of membrane-bound intermediates generated from APP metabolized by alpha- and beta-secretases. Following stimulation with the group II mGluR agonist DCG-IV, levels of APP CTFs in the synaptoneurosomes initially increased but then returned to baseline by 10 min after stimulation. This APP CTF degradation phase was accompanied by sustained accumulation of Abeta(42) in the releasate, which was blocked by the group II mGluR antagonist LY341495. These data suggest that group II mGluR may trigger synaptic activation of all three secretases and that suppression of group II mGluR signaling may be a therapeutic strategy for selectively reducing synaptic generation of Abeta(42).
淀粉样β(Abeta)寡聚体的异常积累可能是阿尔茨海默病(AD)认知失败的基础。所有 Abeta 肽物种在正常大脑活动中都有生理产生。因此,阐明连接兴奋性谷氨酸能神经传递、突触淀粉样前体蛋白(APP)加工及其代谢产物 Abeta 的产生的机制,可能揭示出针对抑制 AD 特征性 Abeta 寡聚体和纤维病理性积累的突触特异性策略。为了研究突触 APP 加工,我们使用从 TgCRND8 小鼠中分离的完整神经末梢(皮质突触体),该小鼠表达具有家族性 AD 突变的人 APP。氯化钾去极化导致 Abeta(42)和 Abeta(40)从突触体中持续释放,并且似乎共同激活了已知生成一系列释放肽的α-、β-和γ-分泌酶,包括 Abeta(40)和 Abeta(42)。用 DHPG(3,5-二羟苯甘氨酸)刺激突触后 I 型代谢型谷氨酸受体(mGluR)可诱导 APP C 端片段(CTFs)在突触体中的快速积累,这是一组由被α-和β-分泌酶代谢的 APP 生成的膜结合中间产物。在用 II 型 mGluR 激动剂 DCG-IV 刺激后,突触体中的 APP CTF 水平最初增加,但在刺激后 10 分钟后恢复到基线。这种 APP CTF 降解阶段伴随着释放物中 Abeta(42)的持续积累,该积累被 II 型 mGluR 拮抗剂 LY341495 阻断。这些数据表明,II 型 mGluR 可能触发所有三种分泌酶的突触激活,并且抑制 II 型 mGluR 信号可能是一种选择性减少突触生成 Abeta(42)的治疗策略。