文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物全球定位系统:追踪全身干细胞行为的考虑因素。

A biological global positioning system: considerations for tracking stem cell behaviors in the whole body.

机构信息

Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County Research Institute, University of California Irvine, 455 South Main Street, Orange, CA 92868, USA.

出版信息

Stem Cell Rev Rep. 2010 Jun;6(2):317-33. doi: 10.1007/s12015-010-9130-9.


DOI:10.1007/s12015-010-9130-9
PMID:20237964
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2887536/
Abstract

Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology--survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments.

摘要

许多最近的研究提出了干细胞疗法作为癌症、脊髓损伤、脑损伤、心血管疾病和其他疾病的治疗方法。这些实验性治疗方法中的一些已经在小动物中进行了测试,在极少数情况下,也在人类中进行了测试。医学研究人员预计,干细胞疗法将在未来得到广泛的临床应用。缺乏关于基础干细胞生物学的基本知识——在实时移植到受损中枢神经系统时的存活、迁移、分化、整合——仍然是试图为中枢神经系统疾病设计干细胞疗法的绝对瓶颈。干细胞疗法在医学实践中的临床应用的一个主要挑战仍然是缺乏有效的干细胞跟踪方法。因此,移植到人类中枢神经系统(CNS)中的绝大多数干细胞的命运,特别是在有害影响方面,仍然未知。缺乏关于基础干细胞生物学的基本知识——在实时移植到受损中枢神经系统时的存活、迁移、分化、整合——仍然是试图为中枢神经系统疾病设计干细胞疗法的瓶颈。尽管优秀的组织学技术仍然是金标准,但目前还没有良好的体内技术可用于评估移植移植物的迁移、分化或存活。为了解决这些问题,我们在这里提出了研究体内移植入中枢神经系统的衍生人类胚胎干细胞(hESC)谱系命运决定的策略。在这里,我们描述了一种全面的生物全球定位系统(bGPS)来跟踪移植的干细胞。但是,首先,我们回顾了目前用于体内跟踪干细胞的四种标准方法:磁共振成像(MRI)、生物发光成像(BLI)、正电子发射断层扫描(PET)成像和荧光成像(FLI)与量子点。我们总结了这些模式,并提出了可以用于对特定应用的实际有用性进行排名的标准。基于该综述的结果,我们认为还需要其他质量来推进这些模式向临床应用。然后,我们讨论了一种用于体内标记和跟踪干细胞的理想程序,最后,我们根据我们的实验提出了一种新的成像系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/51419e8f2c2d/12015_2010_9130_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/504590508b94/12015_2010_9130_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/e448eb760a59/12015_2010_9130_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/aca2cbeb7c3f/12015_2010_9130_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/aa3f4001315f/12015_2010_9130_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/29576338328c/12015_2010_9130_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/7392472d9486/12015_2010_9130_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/5cecef2fb1a6/12015_2010_9130_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/53d8299d47fa/12015_2010_9130_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/c1a2408bd2f9/12015_2010_9130_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/51419e8f2c2d/12015_2010_9130_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/504590508b94/12015_2010_9130_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/e448eb760a59/12015_2010_9130_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/aca2cbeb7c3f/12015_2010_9130_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/aa3f4001315f/12015_2010_9130_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/29576338328c/12015_2010_9130_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/7392472d9486/12015_2010_9130_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/5cecef2fb1a6/12015_2010_9130_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/53d8299d47fa/12015_2010_9130_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/c1a2408bd2f9/12015_2010_9130_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbcf/2887536/51419e8f2c2d/12015_2010_9130_Fig10_HTML.jpg

相似文献

[1]
A biological global positioning system: considerations for tracking stem cell behaviors in the whole body.

Stem Cell Rev Rep. 2010-6

[2]
Molecular imaging in stem cell therapy for spinal cord injury.

Biomed Res Int. 2014

[3]
Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors.

Stem Cells Transl Med. 2016-1

[4]
Tracking and Imaging of Transplanted Stem Cells in Animals.

Methods Mol Biol. 2020

[5]
Commercial nanoparticles for stem cell labeling and tracking.

Theranostics. 2013-7-20

[6]
Imaging cardiac stem cell therapy: translations to human clinical studies.

J Cardiovasc Transl Res. 2011-5-3

[7]
Whole body MRI and fluorescent microscopy for detection of stem cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles and DiI following intramuscular and systemic delivery.

Methods Mol Biol. 2013

[8]
Tracking stem cells for cellular therapy in stroke.

Curr Pharm Des. 2012

[9]
Functional endoscopy techniques for tracking stem cell fate.

Quant Imaging Med Surg. 2019-3

[10]
Tracking stem cell therapy in the myocardium: applications of positron emission tomography.

Curr Pharm Des. 2008

引用本文的文献

[1]
Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications.

Front Photon. 2024

[2]
Mastering the craft: Creating an insightful and widely-cited literature review.

World J Stem Cells. 2023-8-26

[3]
Transplantation of human embryonic stem cells alleviates motor dysfunction in AAV2-Htt171-82Q transfected rat model of Huntington's disease.

Stem Cell Res Ther. 2021-11-22

[4]
Ectosome biogenesis and release processes observed by using live-cell dynamic imaging in mammalian glial cells.

Quant Imaging Med Surg. 2021-11

[5]
Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering.

Nanomaterials (Basel). 2021-9-8

[6]
Embryonic Origin and Subclonal Evolution of Tumor-Associated Macrophages Imply Preventive Care for Cancer.

Cells. 2021-4-14

[7]
Identification and Validation of the Immune Subtypes of Lung Adenocarcinoma: Implications for Immunotherapy.

Front Cell Dev Biol. 2020-7-3

[8]
Beyond chimerism analysis: methods for tracking a new generation of cell-based medicines.

Bone Marrow Transplant. 2020-7

[9]
Breathing Signature as Vitality Score Index Created by Exercises of Qigong: Implications of Artificial Intelligence Tools Used in Traditional Chinese Medicine.

J Funct Morphol Kinesiol. 2019-12

[10]
Functional endoscopy techniques for tracking stem cell fate.

Quant Imaging Med Surg. 2019-3

本文引用的文献

[1]
Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model.

PLoS One. 2009-9-29

[2]
MEK, p38, and PI-3K mediate cross talk between EGFR and TNFR in enhancing hepatocyte growth factor production from human mesenchymal stem cells.

Am J Physiol Cell Physiol. 2009-11

[3]
Mesenchymal stem cells for clinical application.

Vox Sang. 2009-8-3

[4]
Rotational multiphoton endoscopy with a 1 microm fiber laser system.

Opt Lett. 2009-8-1

[5]
In vivo MRI of endogenous stem/progenitor cell migration from subventricular zone in normal and injured developing brains.

Neuroimage. 2009-11-1

[6]
Retraction. Therapeutic window of stem cell potential for targeting pediatric malignant brain tumors: an opportunity for stem cell therapy.

Stem Cell Rev Rep. 2009-12

[7]
Developing compact multiphoton systems using femtosecond fiber lasers.

J Biomed Opt. 2009

[8]
In vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography.

Opt Express. 2007-8-6

[9]
Assessments of proliferation capacity and viability of New Zealand rabbit peripheral blood endothelial progenitor cells labeled with superparamagnetic particles.

Cell Transplant. 2009

[10]
A real-time pluripotency reporter for human stem cells.

Stem Cells Dev. 2010-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索