Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County Research Institute, University of California Irvine, 455 South Main Street, Orange, CA 92868, USA.
Stem Cell Rev Rep. 2010 Jun;6(2):317-33. doi: 10.1007/s12015-010-9130-9.
Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology--survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments.
许多最近的研究提出了干细胞疗法作为癌症、脊髓损伤、脑损伤、心血管疾病和其他疾病的治疗方法。这些实验性治疗方法中的一些已经在小动物中进行了测试,在极少数情况下,也在人类中进行了测试。医学研究人员预计,干细胞疗法将在未来得到广泛的临床应用。缺乏关于基础干细胞生物学的基本知识——在实时移植到受损中枢神经系统时的存活、迁移、分化、整合——仍然是试图为中枢神经系统疾病设计干细胞疗法的绝对瓶颈。干细胞疗法在医学实践中的临床应用的一个主要挑战仍然是缺乏有效的干细胞跟踪方法。因此,移植到人类中枢神经系统(CNS)中的绝大多数干细胞的命运,特别是在有害影响方面,仍然未知。缺乏关于基础干细胞生物学的基本知识——在实时移植到受损中枢神经系统时的存活、迁移、分化、整合——仍然是试图为中枢神经系统疾病设计干细胞疗法的瓶颈。尽管优秀的组织学技术仍然是金标准,但目前还没有良好的体内技术可用于评估移植移植物的迁移、分化或存活。为了解决这些问题,我们在这里提出了研究体内移植入中枢神经系统的衍生人类胚胎干细胞(hESC)谱系命运决定的策略。在这里,我们描述了一种全面的生物全球定位系统(bGPS)来跟踪移植的干细胞。但是,首先,我们回顾了目前用于体内跟踪干细胞的四种标准方法:磁共振成像(MRI)、生物发光成像(BLI)、正电子发射断层扫描(PET)成像和荧光成像(FLI)与量子点。我们总结了这些模式,并提出了可以用于对特定应用的实际有用性进行排名的标准。基于该综述的结果,我们认为还需要其他质量来推进这些模式向临床应用。然后,我们讨论了一种用于体内标记和跟踪干细胞的理想程序,最后,我们根据我们的实验提出了一种新的成像系统。
Biomed Res Int. 2014
Stem Cells Transl Med. 2016-1
Methods Mol Biol. 2020
Theranostics. 2013-7-20
J Cardiovasc Transl Res. 2011-5-3
Curr Pharm Des. 2012
Quant Imaging Med Surg. 2019-3
World J Stem Cells. 2023-8-26
Quant Imaging Med Surg. 2021-11
Nanomaterials (Basel). 2021-9-8
Front Cell Dev Biol. 2020-7-3
Bone Marrow Transplant. 2020-7
Quant Imaging Med Surg. 2019-3
Vox Sang. 2009-8-3
Opt Lett. 2009-8-1
J Biomed Opt. 2009
Stem Cells Dev. 2010-1