Suppr超能文献

基于异麦芽糖醇、糖和微晶纤维素惰性核的包衣丸剂药物释放评价。

Evaluation of drug release from coated pellets based on isomalt, sugar, and microcrystalline cellulose inert cores.

机构信息

Department of Pharmaceutics, Semmelweis University, 7-9 Hogyes E. Street, 1092 Budapest, Hungary.

出版信息

AAPS PharmSciTech. 2010 Mar;11(1):383-91. doi: 10.1208/s12249-010-9396-x. Epub 2010 Mar 17.

Abstract

The objective of the present study was to investigate the effect of the pellet core materials isomalt, sugar, and microcrystalline cellulose on the in vitro drug release kinetics of coated sustained-release pellets as well as to evaluate the influence of different ratios of polymethacrylate copolymers exhibiting different permeability characteristics on the drug release rate. For characterization of the drug release process of pellets, the effect of osmolality was studied using glucose as an osmotically active agent in the dissolution medium. The pellet cores were layered with diclofenac sodium as model drug and coated with different ratios of Eudragit RS30D and Eudragit RL30D (ERS and ERL; 0:1 and 0.5:0.5 and 1:0 ratio) in a fluid bed apparatus. Physical characteristics such as mechanical strength, shape, and size proved that the inert cores were adequate for further processing. The in vitro dissolution tests were performed using a USP Apparatus I (basket method). The results demonstrated that, besides the ratio of the coating polymers (ERS/ERL), the release mechanism was also influenced by the type of starter core used. Sugar- and isomalt-type pellet cores demonstrated similar drug release profiles.

摘要

本研究的目的是研究丸芯材料异麦芽酮糖醇、糖和微晶纤维素对包衣缓释丸的体外药物释放动力学的影响,并评估具有不同渗透特性的不同比例的多甲基丙烯酸酯共聚物对药物释放速率的影响。为了对丸剂的药物释放过程进行特征描述,使用葡萄糖作为溶出介质中的渗透活性物质研究了渗透压的影响。丸芯采用双氯芬酸钠作为模型药物,并在流化床设备中用不同比例的 Eudragit RS30D 和 Eudragit RL30D(ERS 和 ERL;0:1 和 0.5:0.5 和 1:0 比)进行包衣。机械强度、形状和尺寸等物理特性证明惰性丸芯足以进行进一步加工。体外溶解试验采用 USP 装置 I(篮法)进行。结果表明,除了包衣聚合物的比例(ERS/ERL)外,释放机制还受到起始丸芯类型的影响。糖型和异麦芽酮糖醇型丸芯表现出相似的药物释放曲线。

相似文献

1
Evaluation of drug release from coated pellets based on isomalt, sugar, and microcrystalline cellulose inert cores.
AAPS PharmSciTech. 2010 Mar;11(1):383-91. doi: 10.1208/s12249-010-9396-x. Epub 2010 Mar 17.
3
Comparative dissolution study of drug and inert isomalt based core material from layered pellets.
J Pharm Biomed Anal. 2014 Sep;98:339-44. doi: 10.1016/j.jpba.2014.06.005. Epub 2014 Jun 10.
4
Supramolecular elucidation of the quality attributes of microcrystalline cellulose and isomalt composite pellet cores.
J Pharm Biomed Anal. 2013 Oct;84:124-8. doi: 10.1016/j.jpba.2013.04.026. Epub 2013 Apr 25.
5
Preparation and in vitro/in vivo evaluation of esomeprazole magnesium-modified release pellets.
Drug Deliv. 2016;23(3):866-73. doi: 10.3109/10717544.2014.919545. Epub 2014 Jun 3.
6
Statistical optimisation of diclofenac sustained release pellets coated with polymethacrylic films.
Int J Pharm. 2003 Apr 30;256(1-2):43-52. doi: 10.1016/s0378-5173(03)00061-9.
8
Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology.
Int J Pharm. 2015 Jan 15;478(1):318-327. doi: 10.1016/j.ijpharm.2014.11.057. Epub 2014 Nov 27.
9
Suitability of κ-carrageenan pellets for the formulation of multiparticulate tablets with modified release.
Int J Pharm. 2011 May 16;409(1-2):9-18. doi: 10.1016/j.ijpharm.2011.02.016. Epub 2011 Feb 16.
10
Preparation and bioavailability of sustained-release doxofylline pellets in beagle dogs.
Drug Dev Ind Pharm. 2008 Jul;34(7):676-82. doi: 10.1080/03639040701836552.

引用本文的文献

1
Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems.
Pharmaceutics. 2025 Aug 15;17(8):1063. doi: 10.3390/pharmaceutics17081063.
6
Review on Starter Pellets: Inert and Functional Cores.
Pharmaceutics. 2022 Jun 18;14(6):1299. doi: 10.3390/pharmaceutics14061299.
9
Image Analysis: A Versatile Tool in the Manufacturing and Quality Control of Pharmaceutical Dosage Forms.
Pharmaceutics. 2021 May 10;13(5):685. doi: 10.3390/pharmaceutics13050685.
10
Evaluation of Biodegradable PVA-Based 3D Printed Carriers during Dissolution.
Materials (Basel). 2021 Mar 11;14(6):1350. doi: 10.3390/ma14061350.

本文引用的文献

1
Drug release from MCC- and carrageenan-based pellets: experiment and theory.
Eur J Pharm Biopharm. 2009 Oct;73(2):302-9. doi: 10.1016/j.ejpb.2009.05.007. Epub 2009 May 22.
2
Compaction properties of isomalt.
Eur J Pharm Biopharm. 2009 Aug;72(3):621-5. doi: 10.1016/j.ejpb.2009.03.005. Epub 2009 Mar 25.
3
Drug release mechanisms from ethylcellulose: PVA-PEG graft copolymer-coated pellets.
Eur J Pharm Biopharm. 2009 May;72(1):130-7. doi: 10.1016/j.ejpb.2008.12.007. Epub 2008 Dec 25.
4
Prediction of drug release from ethylcellulose coated pellets.
J Control Release. 2009 Apr 2;135(1):71-9. doi: 10.1016/j.jconrel.2008.12.003. Epub 2008 Dec 24.
5
Multiparticulate formulation approach to pulsatile drug delivery: current perspectives.
J Control Release. 2009 Mar 4;134(2):74-80. doi: 10.1016/j.jconrel.2008.11.011. Epub 2008 Nov 24.
6
Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties.
Nutr Res Rev. 2003 Dec;16(2):163-91. doi: 10.1079/NRR200371.
7
Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review.
Eur J Pharm Biopharm. 2009 Jan;71(1):38-46. doi: 10.1016/j.ejpb.2008.08.005. Epub 2008 Aug 19.
8
Characterization of coating systems.
AAPS PharmSciTech. 2007 Dec 21;8(4):E112. doi: 10.1208/pt0804112.
9
Polymer blends for controlled release coatings.
J Control Release. 2008 Jan 4;125(1):1-15. doi: 10.1016/j.jconrel.2007.09.012. Epub 2007 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验