Kühn Clemens, Prasad K V S, Klipp Edda, Gennemark Peter
Humboldt University, DE-10115 Berlin, Germany.
Genome Inform. 2010 Jan;22:69-83.
The high osmolarity glycerol (HOG) signalling system in yeast belongs to the class of Mitogen Activated Protein Kinase (MAPK) pathways that are found in all eukaryotic organisms. It includes at least three scaffold proteins that form complexes, and involves reactions that are strictly dependent on the set of species bound to a certain complex. The scaffold proteins lead to a combinatorial increase in the number of possible states. To date, representations of the HOG pathway have used simplifying assumptions to avoid this combinatorial problem. Such assumptions are hard to make and may obscure or remove essential properties of the system. This paper presents a detailed generic formal representation of the HOG system without such assumptions, showing the molecular interactions known from the literature. The model takes complexes into account, and summarises existing knowledge in an unambiguous and detailed representation. It can thus be used to anchor discussions about the HOG system. In the commonly used Systems Biology Markup Language (SBML), such a model would need to explicitly enumerate all state variables. The Kappa modelling language which we use supports representation of complexes without such enumeration. To conclude, we compare Kappa with a few other modelling languages and software tools that could also be used to represent and model the HOG system.
酵母中的高渗甘油(HOG)信号系统属于有丝分裂原活化蛋白激酶(MAPK)途径类别,这类途径存在于所有真核生物中。它至少包括三种形成复合物的支架蛋白,并涉及严格依赖于与特定复合物结合的一组物质的反应。这些支架蛋白导致可能状态的数量呈组合式增加。迄今为止,HOG途径的表示方法采用了简化假设以避免这个组合问题。此类假设难以做出,并且可能会掩盖或消除系统的基本特性。本文给出了HOG系统在没有此类假设情况下的详细通用形式表示,展示了文献中已知的分子相互作用。该模型考虑了复合物,并以清晰明确且详细的表示方式总结了现有知识。因此,它可用于为有关HOG系统的讨论提供依据。在常用的系统生物学标记语言(SBML)中,这样一个模型需要明确列举所有状态变量。我们使用的Kappa建模语言支持在不进行此类列举的情况下表示复合物。最后,我们将Kappa与其他一些也可用于表示和模拟HOG系统的建模语言及软件工具进行了比较。