Suppr超能文献

The one-site model of human erythrocyte glucose transport: testing its predictions using network thermodynamic computer simulations.

作者信息

May J M

机构信息

Department of Medicine, Vanderbilt University, School of Medicine, Nashville, TN 37232.

出版信息

Biochim Biophys Acta. 1991 Apr 26;1064(1):1-6. doi: 10.1016/0005-2736(91)90404-v.

Abstract

Network thermodynamic computer simulations were carried out using parameters experimentally derived by Lowe and Walmsley ((1987) Biochim. Biophys. Acta 903, 547-550) for two tests of the one-site model of human erythrocyte glucose transport. In the temperature-jump experiment, the simulations predicted the amplitude and relaxation time of accelerated uptake, but underestimated the net uptake due to an unexpectedly low measured basal rate. In the maltose-acceleration experiment, the dissociation constant of maltose was assessed at 0 degrees C by measuring the inhibitory effects of maltose on both cytochalasin B binding and on 3-O-methylglucose uptake, and using this value (52 mM) to calculate the dissociation constant (2.9 mM). The simulated experiment then did show a transient acceleration in uptake comparable in magnitude to that observed experimentally, except that the relaxation time was more than 10-fold longer in the simulations. Measurements of the temperature dependence of the inhibition of cytochalasin B binding by maltose and 3-O-methylglucose indicated that apparent sugar affinity is sensitive to carrier orientation at low temperatures, whereas at more physiologic temperatures the intrinsic dissociation constant predominated.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验