Suppr超能文献

[利用ROC分析估计区分主动和被动吸烟者的烟草生物标志物最佳水平]

[Estimation of optimal levels of tobacco biomarkers to distinguish active and passive smokers using ROC analysis].

作者信息

Zielińska-Danch Wioleta, Goniewicz Maciej Łukasz, Szołtysek-Bołdys Izabela, Czogała Jan, Koszowski Bartosz, Słodczyk Ewa, Anczyk Edmund, Sobczak Andrzej

机构信息

Zakład Chemii Ogólnej i Nieorganicznej, Katedra Chemii Ogólnej i Analitycznej, Slaski Uniwersytet Medyczny, Katowice.

出版信息

Przegl Lek. 2009;66(10):636-40.

Abstract

Many epidemiological studies on health consequences of tobacco smoke exposure require classification of examined subjects either as active or passive smokers. Receiver operating characteristics (ROC) curves are useful for organizing cut-off values of tobacco biomarkers and visualizing their performance. The cut-off values might be applied to distinguish cigarette smokers and persons involuntary exposed to second-hand tobacco smoke (SHS). Aim of the study was estimation of optimal levels of three biomarkers (cotinine, 1-hydroxypyren, and carboxyhemoglobin) to distinguish active and passive smokers using ROC curves. 98 subjects (62% females) were qualified to the study. Mean age was 40 +/- 12 years. Active smokers (n = 38) had an average smoking history of 9 +/- 8 years and declared smoking at least 5 cigarettes per day (mean 17 +/- 7). Passive smokers (n = 60) declared being exposed to environmental tobacco smoke either at home or work (n = 18) or other indoor microenvironments, where they spent some time during their daily activity (n = 42). Cut-off values were determined for each biomarker using ROC curves. Optimal cut-off values were: 327 microg/g creatinine for cotinine, 47 ng/g creatinine for hydroxypyren, and 1.27% HbCO for carboxyhemoglobin. Among three studied biomarkers, cotinine showed the best sensitivity of 97.4% and specificity of 90.0%. Carboxyhemoglobin showed sensitivity of 89.5% and specificity of 93.3%, whereas 1-hydroxypyren 76.3% and 78.3%, respectively. Analysis of ROC curves appears to be a way to distinguish active and passive smokers using various tobacco biomarkers.

摘要

许多关于接触烟草烟雾对健康影响的流行病学研究要求将被检查对象分类为主动吸烟者或被动吸烟者。受试者工作特征(ROC)曲线有助于确定烟草生物标志物的临界值并直观显示其性能。这些临界值可用于区分吸烟者和非自愿接触二手烟草烟雾(SHS)的人。本研究的目的是使用ROC曲线估计三种生物标志物(可替宁、1-羟基芘和碳氧血红蛋白)区分主动吸烟者和被动吸烟者的最佳水平。98名受试者(62%为女性)符合研究条件。平均年龄为40±12岁。主动吸烟者(n = 38)的平均吸烟史为9±8年,宣称每天至少吸5支烟(平均17±7支)。被动吸烟者(n = 60)宣称在家中或工作场所(n = 18)或其他室内微环境中接触环境烟草烟雾,他们在日常活动中会在这些环境中待一段时间(n = 42)。使用ROC曲线为每种生物标志物确定临界值。最佳临界值为:可替宁327μg/g肌酐,羟基芘47ng/g肌酐,碳氧血红蛋白1.27% HbCO。在所研究的三种生物标志物中,可替宁的敏感性最佳,为97.4%,特异性为90.0%。碳氧血红蛋白的敏感性为89.5%,特异性为93.3%,而1-羟基芘的敏感性和特异性分别为76.3%和78.3%。ROC曲线分析似乎是一种使用各种烟草生物标志物区分主动吸烟者和被动吸烟者的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验