Suppr超能文献

瞬态锌离子波动与次级细胞损伤途径中氧化还原信号之间的关系:与创伤性脑损伤的相关性。

The relationship between transient zinc ion fluctuations and redox signaling in the pathways of secondary cellular injury: relevance to traumatic brain injury.

机构信息

Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555, USA.

出版信息

Brain Res. 2010 May 12;1330:131-41. doi: 10.1016/j.brainres.2010.03.034. Epub 2010 Mar 18.

Abstract

A major obstacle that hampers the design of drug therapy for traumatic brain injury is the incomplete understanding of the biochemical pathways that lead to secondary cellular injury and contribute to cell death. One such pathway involves reactive species that generate potentially cytotoxic zinc ion fluctuations as a major executor of neuronal, and possibly glial, cell death. Whether zinc ions released during traumatic brain injury are toxic or protective is controversial but can be approached by investigating the exact concentrations of free zinc ions, the thresholds of compromised zinc buffering capacity, and the mechanism of cellular homeostatic control of zinc. Rapidly stretch-injured rat pheochromocytoma (PC12) cells express cellular zinc ion fluctuations that depend on the production of nitric oxide. Chelation of cellular zinc ions after rapid stretch injury, however, increases cellular reactive oxygen species. In a rat model of traumatic brain injury, parasagittal fluid percussion, analysis of the metal load of metallothionein was used as an indicator of changes in cellular zinc ion concentrations. The combined results from the cellular and in vivo investigations caution against interpreting zinc ion fluctuations in the early phase (24h) after injury as a primarily cytotoxic event.

摘要

阻碍创伤性脑损伤药物治疗设计的一个主要障碍是对导致继发性细胞损伤并导致细胞死亡的生化途径了解不完整。其中一条途径涉及活性物质,它们产生潜在细胞毒性的锌离子波动,是神经元和可能的神经胶质细胞死亡的主要执行者。创伤性脑损伤期间释放的锌离子是有毒的还是有保护作用的,这是有争议的,但可以通过研究游离锌离子的精确浓度、锌缓冲能力受损的阈值以及细胞锌离子稳态控制的机制来研究。快速拉伸损伤的大鼠嗜铬细胞瘤(PC12)细胞表达依赖于一氧化氮产生的细胞锌离子波动。然而,快速拉伸损伤后螯合细胞内锌离子会增加细胞内活性氧。在创伤性脑损伤大鼠模型中,通过分析金属硫蛋白的金属负荷来评估细胞内锌离子浓度的变化,作为细胞内锌离子浓度变化的指标。细胞和体内研究的综合结果告诫人们不要将损伤后早期(24 小时)的锌离子波动解释为主要的细胞毒性事件。

相似文献

2
The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling.
Arch Biochem Biophys. 2007 Jul 15;463(2):188-200. doi: 10.1016/j.abb.2007.02.017. Epub 2007 Mar 7.
3
Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc.
Exp Gerontol. 2008 May;43(5):363-9. doi: 10.1016/j.exger.2007.11.005. Epub 2007 Nov 28.
4
Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease.
Mol Med. 2007 Jul-Aug;13(7-8):371-5. doi: 10.2119/2007–00036.Maret.
6
Metallothionein regulates intracellular zinc signaling during CD4(+) T cell activation.
BMC Immunol. 2016 Jun 2;17(1):13. doi: 10.1186/s12865-016-0151-2.
7
Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals.
Biometals. 2009 Feb;22(1):149-57. doi: 10.1007/s10534-008-9186-z. Epub 2009 Jan 7.
8
Zinc coordination environments in proteins as redox sensors and signal transducers.
Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1419-41. doi: 10.1089/ars.2006.8.1419.

引用本文的文献

2
Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side.
Int J Mol Sci. 2022 Sep 23;23(19):11193. doi: 10.3390/ijms231911193.
3
Zn influx activates ERK and Akt signaling pathways.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2015786118.
4
Zinc in the Brain: Friend or Foe?
Int J Mol Sci. 2020 Nov 25;21(23):8941. doi: 10.3390/ijms21238941.
5
Zinc and Traumatic Brain Injury: From Chelation to Supplementation.
Med Sci (Basel). 2020 Aug 17;8(3):36. doi: 10.3390/medsci8030036.
7
Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies.
Brain Res. 2016 Jun 1;1640(Pt A):114-129. doi: 10.1016/j.brainres.2015.12.030. Epub 2015 Dec 23.
8
Mechanochemical regulations of RPA's binding to ssDNA.
Sci Rep. 2015 Mar 19;5:9296. doi: 10.1038/srep09296.
10
Zinc-mediated allosteric inhibition of caspase-6.
J Biol Chem. 2012 Oct 19;287(43):36000-11. doi: 10.1074/jbc.M112.397752. Epub 2012 Aug 13.

本文引用的文献

1
Protective effect of zinc aspartate on long-term ischemia-reperfusion injury in rat skeletal muscle.
Biol Trace Elem Res. 2010 Nov;137(2):206-15. doi: 10.1007/s12011-009-8568-6. Epub 2009 Nov 24.
2
Zinc in the physiology and pathology of the CNS.
Nat Rev Neurosci. 2009 Nov;10(11):780-91. doi: 10.1038/nrn2734. Epub 2009 Oct 14.
3
The role of zinc in the modulation of neuronal proliferation and apoptosis.
Neurotox Res. 2010 Jan;17(1):1-14. doi: 10.1007/s12640-009-9067-4.
4
Coordination dynamics of zinc in proteins.
Chem Rev. 2009 Oct;109(10):4682-707. doi: 10.1021/cr800556u.
5
Transient fluctuations of intracellular zinc ions in cell proliferation.
Exp Cell Res. 2009 Aug 15;315(14):2463-70. doi: 10.1016/j.yexcr.2009.05.016. Epub 2009 May 23.
6
Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning.
J Neurochem. 2009 Jul;110(1):106-17. doi: 10.1111/j.1471-4159.2009.06106.x. Epub 2009 Apr 22.
7
Essential role for zinc-triggered p75NTR activation in preconditioning neuroprotection.
J Neurosci. 2008 Oct 22;28(43):10919-27. doi: 10.1523/JNEUROSCI.3421-08.2008.
8
Pharmacology of traumatic brain injury: where is the "golden bullet"?
Mol Med. 2008 Nov-Dec;14(11-12):731-40. doi: 10.2119/2008-00050.Beauchamp. Epub 2008 Aug 18.
9
Glutamate mobilizes [Zn2+] through Ca2+ -dependent reactive oxygen species accumulation.
J Neurochem. 2008 Sep;106(5):2184-93. doi: 10.1111/j.1471-4159.2008.05536.x. Epub 2008 Jul 4.
10
Chelation of neurotoxic zinc levels does not improve neurobehavioral outcome after traumatic brain injury.
Neurosci Lett. 2008 Aug 1;440(2):155-9. doi: 10.1016/j.neulet.2008.05.068. Epub 2008 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验