Suppr超能文献

白色念珠菌Ess1脯氨酰异构酶中受限的结构域流动性。

Restricted domain mobility in the Candida albicans Ess1 prolyl isomerase.

作者信息

McNaughton Lynn, Li Zhong, Van Roey Patrick, Hanes Steven D, LeMaster David M

机构信息

Wadsworth Center, New York State Department of Health, School of Public Health, University at Albany, Empire State Plaza, Albany, NY 12201, USA.

出版信息

Biochim Biophys Acta. 2010 Jul;1804(7):1537-41. doi: 10.1016/j.bbapap.2010.03.005. Epub 2010 Mar 18.

Abstract

Ess1 is a peptidyl prolyl cis/trans isomerase that is required for virulence of the pathogenic fungi Candida albicans and Cryptococcus neoformans. The enzyme isomerizes the phospho-Ser-Pro linkages in the C-terminal domain of RNA polymerase II. Its human homolog, Pin1, has been implicated in a wide range of human diseases, including cancer and Alzheimer's disease. Crystallographic and NMR studies have demonstrated that the sequence linking the catalytic isomerase domain and the substrate binding WW domain of Pin1 is unstructured and that the two domains are only loosely associated in the absence of the substrate. In contrast, the crystal structure of C. albicans Ess1 revealed a highly ordered linker that contains a three turn alpha-helix and extensive association between the two tightly juxtaposed domains. In part to address the concern that the marked differences in the domain interactions for the human and fungal structures might reflect crystal lattice effects, NMR chemical shift analysis and 15N relaxation measurements have been employed to confirm that the linker of the fungal protein is highly ordered in solution. With the exception of two loops within the active site of the isomerase domain, the local backbone geometry observed in the crystal structure appears to be well preserved throughout the protein chain. The marked differences in interdomain interactions and linker flexibility between the human and fungal enzymes provide a structural basis for therapeutic targeting of the fungal enzymes.

摘要

Ess1是一种肽基脯氨酰顺反异构酶,是致病性真菌白色念珠菌和新型隐球菌致病力所必需的。该酶使RNA聚合酶II C末端结构域中的磷酸丝氨酸-脯氨酸连接发生异构化。其人类同源物Pin1与多种人类疾病有关,包括癌症和阿尔茨海默病。晶体学和核磁共振研究表明,连接Pin1催化异构酶结构域和底物结合WW结构域的序列是无结构的,并且在没有底物的情况下,这两个结构域仅松散结合。相比之下,白色念珠菌Ess1的晶体结构显示出一个高度有序的连接子,其中包含一个三圈α螺旋,并且两个紧密相邻的结构域之间存在广泛的关联。为了部分解决关于人类和真菌结构在结构域相互作用上的显著差异可能反映晶格效应的担忧,已采用核磁共振化学位移分析和15N弛豫测量来证实真菌蛋白的连接子在溶液中是高度有序的。除了异构酶结构域活性位点内的两个环之外,晶体结构中观察到的局部主链几何形状在整个蛋白质链中似乎都得到了很好的保留。人类和真菌酶在结构域间相互作用和连接子灵活性上的显著差异为真菌酶的治疗靶向提供了结构基础。

相似文献

1
Restricted domain mobility in the Candida albicans Ess1 prolyl isomerase.
Biochim Biophys Acta. 2010 Jul;1804(7):1537-41. doi: 10.1016/j.bbapap.2010.03.005. Epub 2010 Mar 18.
3
Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
Biochim Biophys Acta. 2008 Sep;1784(9):1208-14. doi: 10.1016/j.bbapap.2008.04.026. Epub 2008 May 8.
4
Peptide binding induces large scale changes in inter-domain mobility in human Pin1.
J Biol Chem. 2003 Jul 11;278(28):26174-82. doi: 10.1074/jbc.M300796200. Epub 2003 Apr 9.
5
Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana.
J Mol Biol. 2002 Jul 5;320(2):321-32. doi: 10.1016/S0022-2836(02)00429-1.
6
Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding.
J Biol Chem. 2003 Jul 11;278(28):26183-93. doi: 10.1074/jbc.M300721200. Epub 2003 Apr 29.
7
Structural basis for phosphoserine-proline recognition by group IV WW domains.
Nat Struct Biol. 2000 Aug;7(8):639-43. doi: 10.1038/77929.
8
The Ess1 prolyl isomerase is dispensable for growth but required for virulence in Cryptococcus neoformans.
Microbiology (Reading). 2005 May;151(Pt 5):1593-1605. doi: 10.1099/mic.0.27786-0.
9
Role of Ess1 in growth, morphogenetic switching, and RNA polymerase II transcription in Candida albicans.
PLoS One. 2013;8(3):e59094. doi: 10.1371/journal.pone.0059094. Epub 2013 Mar 14.
10
Stereospecific gating of functional motions in Pin1.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12289-94. doi: 10.1073/pnas.1019382108. Epub 2011 Jul 11.

引用本文的文献

3
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle.
Biochim Biophys Acta. 2014;1839(4):316-33. doi: 10.1016/j.bbagrm.2014.02.001. Epub 2014 Feb 12.
4
Role of Ess1 in growth, morphogenetic switching, and RNA polymerase II transcription in Candida albicans.
PLoS One. 2013;8(3):e59094. doi: 10.1371/journal.pone.0059094. Epub 2013 Mar 14.

本文引用的文献

2
Discovery and binding studies on a series of novel Pin1 ligands.
Chem Biol Drug Des. 2009 Apr;73(4):369-79. doi: 10.1111/j.1747-0285.2009.00795.x.
3
Recent approaches to antifungal therapy for invasive mycoses.
ChemMedChem. 2009 Mar;4(3):310-23. doi: 10.1002/cmdc.200800353.
4
Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
Biochim Biophys Acta. 2008 Sep;1784(9):1208-14. doi: 10.1016/j.bbapap.2008.04.026. Epub 2008 May 8.
5
Consistent blind protein structure generation from NMR chemical shift data.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4685-90. doi: 10.1073/pnas.0800256105. Epub 2008 Mar 7.
6
On the benefit of bivalency in peptide ligand/pin1 interactions.
J Mol Biol. 2007 Nov 16;374(1):147-61. doi: 10.1016/j.jmb.2007.09.019. Epub 2007 Sep 14.
7
Protein structure determination from NMR chemical shifts.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9615-20. doi: 10.1073/pnas.0610313104. Epub 2007 May 29.
8
Sequence-specific dynamics modulate recognition specificity in WW domains.
Nat Struct Mol Biol. 2007 Apr;14(4):325-31. doi: 10.1038/nsmb1207. Epub 2007 Mar 4.
9
Structure and dynamics of pin1 during catalysis by NMR.
J Mol Biol. 2007 Apr 13;367(5):1370-81. doi: 10.1016/j.jmb.2007.01.049. Epub 2007 Jan 24.
10
Functionally important residues in the peptidyl-prolyl isomerase Pin1 revealed by unigenic evolution.
J Mol Biol. 2007 Jan 26;365(4):1143-62. doi: 10.1016/j.jmb.2006.10.078. Epub 2006 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验