Landrieu Isabelle, Wieruszeski Jean-Michel, Wintjens René, Inzé Dirk, Lippens Guy
UMR 8525 CNRS-Lille2, Institut de Biologie de Lille/Pasteur Institute of Lille, 59019 Lille Cedex, France.
J Mol Biol. 2002 Jul 5;320(2):321-32. doi: 10.1016/S0022-2836(02)00429-1.
The 119-amino acid residue prolyl cis/trans isomerase from Arabidopsis thaliana (PIN1At) is similar to the catalytic domain of the human hPIN1. However, PIN1At lacks the N-terminal WW domain that appears to be essential for the hPIN1 function. Here, the solution structure of PIN1At was determined by three-dimensional nuclear magnetic resonance spectroscopy. The PIN1At fold could be superimposed on that of the catalytic domain of hPIN1 and had a 19 residue flexible loop located between strand beta1 and helix alpha1. The dynamical features of this beta1/alpha1-loop, which are characteristic for a region involved in protein-protein interactions, led to exchange broadening in the NMR spectra. When sodium sulfate salt was added to the protein sample, the beta1/alpha1 loop was stabilized and, hence, a complete backbone resonance assignment was obtained. Previously, with a phospho-Cdc25 peptide as substrate, PIN1At had been shown to catalyze the phosphoserine/phosphothreonine prolyl cis/trans isomerization specifically. To map the catalytic site of PIN1At, the phospho-Cdc25 peptide or sodium sulfate salt was added in excess to the protein and chemical shift changes in the backbone amide protons were monitored in the (1)H(N)-(15)N heteronuclear single quantum coherence spectrum. The peptide caused perturbations in the loops between helix alpha4 and strand beta3, between strands beta3 and beta4, in the alpha3 helix, and in the beta1/alpha1 loop. The amide groups of the residues Arg21 and Arg22 showed large chemical shift perturbations upon phospho-Cdc25 peptide or sulfate addition. We conclude that this basic cluster formed by Arg21 and Arg22, both located in the beta1/alpha1 loop, is homologous to that found in the hPIN1 crystal structure (Arg68 and Arg69), which also is involved in sulfate ion binding. We showed that the sulfate group competed for the interaction between PIN1At and the phospho-Cdc25 peptide. In the absence of the WW domain, three hydrophobic residues (Ile33, Ile34, and Leu35) located in the long flexible loop and specific for the plant PIN-type peptidyl prolyl cis/trans isomerases (PPIases) could be an additional interaction site in PIN1At. However, phospho-peptide addition did not affect the resonances of these residues significantly. Electrostatic potential calculations revealed a negatively charged area not found in hPIN1 on the PIN1At molecular surface, which corresponds to the surface shielded by the WW domain in hPIN1. Based on our experimental results and the molecular specificities of the PIN1At enzyme, functional implications of the lack of WW domains in this plant PIN-type PPIase will be discussed.
来自拟南芥的119个氨基酸残基的脯氨酰顺/反异构酶(PIN1At)与人类hPIN1的催化结构域相似。然而,PIN1At缺乏对hPIN1功能似乎至关重要的N端WW结构域。在此,通过三维核磁共振光谱法确定了PIN1At的溶液结构。PIN1At的折叠结构可以与hPIN1催化结构域的折叠结构重叠,并且在β1链和α1螺旋之间有一个19个残基的柔性环。这个β1/α1环的动态特征是参与蛋白质-蛋白质相互作用区域的特征,导致核磁共振谱中的交换加宽。当向蛋白质样品中加入硫酸钠时,β1/α1环得以稳定,因此获得了完整的主链共振归属。此前,已证明PIN1At以磷酸化Cdc25肽为底物,能特异性催化磷酸丝氨酸/磷酸苏氨酸脯氨酰顺/反异构化。为了确定PIN1At的催化位点,将磷酸化Cdc25肽或硫酸钠过量加入到蛋白质中,并在1H(N)-15N异核单量子相干谱中监测主链酰胺质子的化学位移变化。该肽在α4螺旋和β3链之间、β3链和β4链之间的环、α3螺旋以及β1/α1环中引起了扰动。在加入磷酸化Cdc25肽或硫酸盐后,残基Arg21和Arg22的酰胺基团显示出较大的化学位移扰动。我们得出结论,由位于β1/α1环中的Arg21和Arg22形成的这个碱性簇与hPIN1晶体结构中发现的碱性簇(Arg68和Arg69)同源,后者也参与硫酸根离子结合。我们表明硫酸根基团竞争PIN1At与磷酸化Cdc25肽之间得相互作用。在没有WW结构域的情况下,位于长柔性环中且为植物PIN型肽基脯氨酰顺/反异构酶(PPIases)所特有的三个疏水残基(Ile33、Ile34和Leu35)可能是PIN1At中的另一个相互作用位点。然而,加入磷酸化肽对这些残基的共振没有显著影响。静电势计算揭示了PIN1At分子表面上一个在hPIN1中未发现的带负电荷区域,这对应于hPIN1中被WW结构域屏蔽的表面区域。基于我们的实验结果和PIN1At酶的分子特异性,将讨论这种植物PIN型PPIase中缺乏WW结构域的功能意义。