Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Am Chem Soc. 2010 Apr 14;132(14):5105-13. doi: 10.1021/ja909378n.
The enzyme nitric oxide synthase is both medically relevant and of particular interest from a basic sciences perspective due to the complex nature of the chemical mechanism used to generate NO. The enzyme utilizes multiple redox-active cofactors and substrates to catalyze the five-electron oxidation of substrate l-arginine to citrulline and nitric oxide. Two flavins, a cysteine-coordinated heme cofactor and, uniquely, a tetrahydrobiopterin cofactor, are used to deliver electrons from the cosubstrate NADPH to molecular oxygen, analogous to other P450s. The unprecedented involvement of the pterin cofactor as a single electron donor is unique among P450s and pterin utilizing proteins alike and adds to the complexity of this enzyme. In this report, the peroxide shunt with both Mn- and Fe-containing heme domain constructs of iNOS(heme) was used to characterize the formation of HNO as the initial inorganic product produced when oxygen activation occurs without pterin radical formation. To recover NO formation, preturnover of the iron-containing enzyme with l-arginine was used to generate the pterin-centered radical, followed by peroxide shunt chemistry. Comparison of NO produced by this reaction with reactions that do not undergo preturnover, do not have peroxide added, or are performed with a pterin unable to generate a radical shows NO production to be dependent on both a pterin-centered radical and activated oxygen. Finally, the chemical HNO donor, Angeli's salt, was used to form the ferrous nitrosyl in the presence of the pterin radical intermediate. Under these conditions, the rate of pterin radical decay was increased as monitored by EPR spectroscopy. In comparison to pterin that aerobically decays, the Angeli's salt treated sample is also significantly protected from oxidation, suggesting ferrous-nitrosyl-mediated reduction of the radical. Taken together, these results support a dual redox cycling role for the pterin cofactor during NOS turnover of NHA with particular importance for the proper release of NO from a proposed ferrous nitrosyl intermediate.
一氧化氮合酶不仅在医学上具有重要意义,而且从基础科学的角度来看也具有特殊的意义,因为其生成 NO 的化学机制非常复杂。该酶利用多种氧化还原活性辅因子和底物,催化底物 l-精氨酸的五电子氧化,生成瓜氨酸和一氧化氮。两种黄素、一个半胱氨酸配位的血红素辅因子以及独特的四氢生物蝶呤辅因子,用于将辅底物 NADPH 的电子传递给分子氧,类似于其他 P450 酶。作为单个电子供体的前所未有的蝶呤辅因子的参与在 P450 酶和利用蝶呤的蛋白质中是独特的,这增加了该酶的复杂性。在本报告中,使用 Mn 和 Fe 均含有的 iNOS(血红素)结构域构建体的过氧化物分流来表征 HNO 的形成,作为在没有蝶呤自由基形成的情况下发生氧活化时产生的初始无机产物。为了恢复 NO 的形成,使用 l-精氨酸预先转化含铁的酶以产生以蝶呤为中心的自由基,然后进行过氧化物分流化学。将通过该反应产生的 NO 与不进行预先转化、未添加过氧化物或使用不能产生自由基的蝶呤进行的反应进行比较,结果表明 NO 的产生取决于以蝶呤为中心的自由基和活化氧。最后,使用化学 HNO 供体 Angeli 盐在蝶呤自由基中间产物存在的情况下形成亚铁亚硝酰基。在这些条件下,通过 EPR 光谱监测,以蝶呤为中心的自由基的衰减速率增加。与在有氧条件下衰减的蝶呤相比,用 Angeli 盐处理的样品也明显受到保护而不被氧化,这表明亚铁亚硝酰基介导了自由基的还原。综上所述,这些结果支持在 NOS 转换 NHA 过程中,蝶呤辅因子具有双重氧化还原循环作用,特别是对于从提议的亚铁亚硝酰基中间产物中适当释放 NO 具有特别重要的作用。