Suppr超能文献

一种具有人口统计学特征的随机SIS流行病:初始阶段和灭绝时间。

A stochastic SIS epidemic with demography: initial stages and time to extinction.

作者信息

Andersson Patrik, Lindenstrand David

机构信息

Department of Mathematics, Stockholm University, Sweden.

出版信息

J Math Biol. 2011 Mar;62(3):333-48. doi: 10.1007/s00285-010-0336-x. Epub 2010 Mar 23.

Abstract

We study an open population stochastic epidemic model from the time of introduction of the disease, through a possible outbreak and to extinction. The model describes an SIS (susceptible-infective-susceptible) epidemic where all individuals, including infectious ones, reproduce at a given rate. An approximate expression for the outbreak probability is derived using a coupling argument. Further, we analyse the behaviour of the model close to quasi-stationarity, and the time to disease extinction, with the aid of a diffusion approximation. In this situation the number of susceptibles and infectives behaves as an Ornstein-Uhlenbeck process, centred around the stationary point, for an exponentially distributed time before going extinct.

摘要

我们研究一个开放种群的随机流行病模型,从疾病引入之时起,经过可能的爆发直至灭绝。该模型描述了一种SIS(易感-感染-易感)流行病,其中所有个体,包括感染者,都以给定速率繁殖。通过耦合论证得出了爆发概率的近似表达式。此外,借助扩散近似,我们分析了模型接近准平稳状态时的行为以及疾病灭绝时间。在这种情况下,易感者和感染者的数量在灭绝前呈指数分布的时间内,围绕平衡点表现为奥恩斯坦-乌伦贝克过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验