Andersson Patrik, Lindenstrand David
Department of Mathematics, Stockholm University, Sweden.
J Math Biol. 2011 Mar;62(3):333-48. doi: 10.1007/s00285-010-0336-x. Epub 2010 Mar 23.
We study an open population stochastic epidemic model from the time of introduction of the disease, through a possible outbreak and to extinction. The model describes an SIS (susceptible-infective-susceptible) epidemic where all individuals, including infectious ones, reproduce at a given rate. An approximate expression for the outbreak probability is derived using a coupling argument. Further, we analyse the behaviour of the model close to quasi-stationarity, and the time to disease extinction, with the aid of a diffusion approximation. In this situation the number of susceptibles and infectives behaves as an Ornstein-Uhlenbeck process, centred around the stationary point, for an exponentially distributed time before going extinct.
我们研究一个开放种群的随机流行病模型,从疾病引入之时起,经过可能的爆发直至灭绝。该模型描述了一种SIS(易感-感染-易感)流行病,其中所有个体,包括感染者,都以给定速率繁殖。通过耦合论证得出了爆发概率的近似表达式。此外,借助扩散近似,我们分析了模型接近准平稳状态时的行为以及疾病灭绝时间。在这种情况下,易感者和感染者的数量在灭绝前呈指数分布的时间内,围绕平衡点表现为奥恩斯坦-乌伦贝克过程。